作者: Didier Josselin , Jagannath Aryal , Cyrille Genre-Grandpierre , Romain Louvet , Christèle Marchand-Lagier
DOI:
关键词: Spatial disaggregation 、 Electoral geography 、 Overlay 、 Areal interpolation 、 Geography 、 Cartography 、 Polling 、 Spatial contextual awareness 、 Spatial aggregation 、 Robustness (computer science)
摘要: We developed an algorithm for reducing geometric differences between source and target dataset. The tackles the polygon overlay problem in electoral geography before using areal in- terpolation methods. Our results show that improvement matching statistical areas and polling can reduce up to half of interpolation errors, therefore improving robustness of analysis behaviour their spatial context. This is applied two case studies: the city Avignon, France, city Hobart, Australia.