A MIXED FINITE ELEMENT FORMULATION OF TRIPHASIC MECHANO-ELECTROCHEMICAL THEORY FOR CHARGED, HYDRATED BIOLOGICAL SOFT TISSUES

作者: D. N. Sun , W. Y. Gu , X. E. Guo , W. M. Lai , V. C. Mow

DOI: 10.1002/(SICI)1097-0207(19990810)45:10<1375::AID-NME635>3.0.CO;2-7

关键词: Extended finite element methodMathematical analysisMixed finite element methodFinite difference methodOrdinary differential equationGalerkin methodFinite element methodMethod of mean weighted residualsGeometryBackward Euler methodMathematics

摘要: An equivalent new expression of the triphasic mechano-electrochemical theory [9] is presented and a mixed finite element formulation developed using standard Galerkin weighted residual method. Solid displacement us, modified electrochemical/chemical potentials ϵw, ϵ+and ϵ− (with dimensions concentration) for water, cation anion are chosen as four primary degrees freedom (DOFs) independently interpolated. The Newton–Raphson iterative procedure employed to handle non-linear terms. resulting first-order Ordinary Differential Equations (ODEs) with respect time solved implicit Euler backward scheme which unconditionally stable. One-dimensional (1-D) linear isoparametric developed. final algebraic equations form non-symmetric but sparse matrix system. With current choice DOFs, has advantage small amount storage, jump conditions between elements across interface boundary satisfied automatically. been used investigate 1-D stress relaxation problem in confined compression configuration free swelling problem. accuracy convergence cases examined independent difference methods. FEM results excellent agreement those obtained from other Copyright © 1999 John Wiley & Sons, Ltd.

参考文章(50)
HELEN MUIR, Proteoglycans as organizers of the intercellular matrix. Biochemical Society Transactions. ,vol. 11, pp. 613- 622 ,(1983) , 10.1042/BST0110613
W. Michael Lai, Van C. Mow, Drag-induced compression of articular cartilage during a permeation experiment. Biorheology. ,vol. 17, pp. 111- 123 ,(1980) , 10.3233/BIR-1980-171-213
P. A. Torzilli, E. Askari, J. T. Jenkins, Water Content and Solute Diffusion Properties in Articular Cartilage Springer, New York, NY. pp. 363- 390 ,(1990) , 10.1007/978-1-4612-3448-7_13
E. H. Frank, A. J. Grodzinsky, S. L. Phillips, P. E. Grimshaw, Physicochemical and Bioelectrical Determinants of Cartilage Material Properties Springer, New York, NY. pp. 261- 282 ,(1990) , 10.1007/978-1-4612-3448-7_9
A. Katchalsky, Peter F. Curran, Nonequilibrium Thermodynamics in Biophysics ,(1965)
Klaus-Jürgen Bathe, Finite Element Procedures ,(1995)
JD Jan Janssen, Jmrj Jacques Huyghe, Ajh Arjan Frijns, Experimental validation of a four components mixture theory for swelling porous media ASME. ,(1998)
B. R. Simon, J. S.-S. Wu, O. C. Zienkiewicz, Evaluation of higher order, mixed and Hermitean finite element procedures for dynamic analysis of saturated porous media using one‐dimensional models International Journal for Numerical and Analytical Methods in Geomechanics. ,vol. 10, pp. 483- 499 ,(1986) , 10.1002/NAG.1610100503
W. M. Lai, J. S. Hou, V. C. Mow, A triphasic theory for the swelling and deformation behaviors of articular cartilage. Journal of Biomechanical Engineering-transactions of The Asme. ,vol. 113, pp. 245- 258 ,(1991) , 10.1115/1.2894880