Multiscale convolutional neural networks for vision: based classification of cells

作者: Pierre Buyssens , Abderrahim Elmoataz , Olivier Lézoray

DOI: 10.1007/978-3-642-37444-9_27

关键词: Pleural CancerArtificial intelligenceVirtual slideVision basedSAFERConvolutional neural networkComputer science

摘要: We present a Multiscale Convolutional Neural Network (MCNN) approach for vision---based classification of cells. Based on several deep Networks (CNN) acting at different resolutions, the proposed architecture avoid classical handcrafted features extraction step, by processing and as whole. The gives better rates than state---of---the---art methods allowing safer Computer---Aided Diagnosis pleural cancer.

参考文章(13)
W. T. Elliott McCaughey, Hector Battifora, Education in Pathology, Tumors of the serosal membranes Armed Forces Institute of Pathology under the auspices of Universities Associated for Research and Education in Pathology : [For sale by] the Armed Forces Institute of Pathology. ,(1995)
Martin Zarzycki, Timna Schneider, Dietrich Meyer-Ebrecht, Alfred Böcking, Classification of Cell Types in Feulgen Stained Cytologic Specimens Using Morphologic Features Bildverarbeitung für die Medizin. pp. 410- 414 ,(2005) , 10.1007/3-540-26431-0_84
Dominik Scherer, Andreas Müller, Sven Behnke, None, Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition Artificial Neural Networks – ICANN 2010. pp. 92- 101 ,(2010) , 10.1007/978-3-642-15825-4_10
Jihene Malek, Abderrahim Sebri, Souhir Mabrouk, Kholdoun Torki, Rached Tourki, Automated Breast Cancer Diagnosis Based on GVF-Snake Segmentation, Wavelet Features Extraction and Fuzzy Classification signal processing systems. ,vol. 55, pp. 49- 66 ,(2009) , 10.1007/S11265-008-0198-2
N. Ueda, Optimal linear combination of neural networks for improving classification performance IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 22, pp. 207- 215 ,(2000) , 10.1109/34.825759
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition Proceedings of the IEEE. ,vol. 86, pp. 2278- 2324 ,(1998) , 10.1109/5.726791
D. H. Hubel, T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex The Journal of Physiology. ,vol. 160, pp. 106- 154 ,(1962) , 10.1113/JPHYSIOL.1962.SP006837
Ueli Meier, Dan Claudiu Ciresan, Luca Maria Gambardella, Jurgen Schmidhuber, Better Digit Recognition with a Committee of Simple Neural Nets international conference on document analysis and recognition. pp. 1250- 1254 ,(2011) , 10.1109/ICDAR.2011.252
C. Nebauer, Evaluation of convolutional neural networks for visual recognition IEEE Transactions on Neural Networks. ,vol. 9, pp. 685- 696 ,(1998) , 10.1109/72.701181