Convex Quadratic Approximation

作者: J. Ben Rosen , Roummel F. Marcia

DOI: 10.1023/B:COAP.0000026883.13660.84

关键词: Nonlinear programmingApproximation errorFunction (mathematics)CombinatoricsQuadratic functionQuadratic equationConvex functionHessian matrixRank (differential topology)Mathematics

摘要: … In the present paper we generalize the earlier approximation to a general convex quadratic function. … The formulation is given for the case where we approximate m data points: …

参考文章(15)
I. Barrodale, L1 Approximation and the Analysis of Data Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 17, pp. 51- 57 ,(1968) , 10.2307/2985267
John Rischard Rice, The approximation of functions ,(1964)
J Ben Rosen, Haesun Park, John Glick, Lei Zhang, Accurate Solution to Overdetermined Linear Equations with Errors Using L1 Norm Minimization Computational Optimization and Applications. ,vol. 17, pp. 329- 341 ,(2000) , 10.1023/A:1026562601717
Farid Alizadeh, Jean-Pierre A. Haeberly, Michael L. Overton, Complementarity and nondegeneracy in semidefinite programming Mathematical Programming. ,vol. 77, pp. 111- 128 ,(1997) , 10.1007/BF02614432
Philip E. Gill, Walter Murray, Michael A. Saunders, SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization Siam Journal on Optimization. ,vol. 12, pp. 979- 1006 ,(2002) , 10.1137/S1052623499350013
M.J.D. Powell, On the Lagrange functions of quadratic models that are defined by interpolation Optimization Methods & Software. ,vol. 16, pp. 289- 309 ,(2001) , 10.1080/10556780108805839
D. WINFIELD, Function Minimization by Interpolation in a Data Table Ima Journal of Applied Mathematics. ,vol. 12, pp. 339- 347 ,(1973) , 10.1093/IMAMAT/12.3.339
Michael J. D. Powell, Approximation theory and methods ,(1981)
K.A. DILL, A.T. PHILLIPS, J.B. ROSEN, Protein structure and energy landscape dependence on sequence using a continuous energy function. Journal of Computational Biology. ,vol. 4, pp. 227- 239 ,(1997) , 10.1089/CMB.1997.4.227