Beyond Chemical Accuracy for Alkane Thermochemistry: The DHthermo Approach.

作者: Carlo Adamo , Carlo Adamo , Eric Brémond , Juan Carlos Sancho-García , Bernardino Tirri

DOI: 10.1021/ACS.JOC.1C00058

关键词: London dispersion forceBasis (linear algebra)Isodesmic reactionIntramolecular forceStability (probability)ChemistryThermochemistryStatistical physicsBasis setDensity functional theory

摘要: The so-called protobranching phenomenon, that is the greater stability of branched alkanes with respect to their linear isomers, represents an interesting challenge for approaches based on density functional theory (DFT), since it requires a balanced description several electronic effects, including (intramolecular) dispersion forces. Here, we investigate this problem using protocol recently developed double-hybrid functionals and small basis set, DH-SVPD, suited noncovalent interactions. energies bond separation reactions (BSR), defined isodesmic principle, are taken as reference properties evaluation 15 DFT approaches. obtained results show error lower than "chemical accuracy" (<1.0 kcal/mol) can be by proposed both relative reaction enthalpies. These then verified standard BSR36 data set support proposition our computational protocol, named DHthermo, where any DH functional, such PBE-QIDH or B2PLYP, provides accurate when coupled empirical correction DH-SVPD set. This not only gives subchemical accuracy thermochemistry but extremely easy use common quantum-chemistry codes.

参考文章(65)
David A. Dixon, David Feller, Kirk A. Peterson, A Practical Guide to Reliable First Principles Computational Thermochemistry Predictions Across the Periodic Table Annual Reports in Computational Chemistry Volume 8. ,vol. 8, pp. 1- 28 ,(2012) , 10.1016/B978-0-444-59440-2.00001-6
Jan M.L. Martin, Chapter 3 Computational Thermochemistry: A Brief Overview of Quantum Mechanical Approaches Annual Reports in Computational Chemistry. ,vol. 1, pp. 31- 43 ,(2005) , 10.1016/S1574-1400(05)01003-0
Axel D. Becke, Erin R. Johnson, Exchange-hole dipole moment and the dispersion interaction revisited. Journal of Chemical Physics. ,vol. 127, pp. 154108- 154108 ,(2007) , 10.1063/1.2795701
Branko Ruscic, Reinhardt E. Pinzon, Melita L. Morton, Gregor von Laszevski, Sandra J. Bittner, Sandeep G. Nijsure, Kaizar A. Amin, Michael Minkoff, Albert F. Wagner, Introduction to Active Thermochemical Tables: Several “Key” Enthalpies of Formation Revisited† Journal of Physical Chemistry A. ,vol. 108, pp. 9979- 9997 ,(2004) , 10.1021/JP047912Y
Bun Chan, Leo Radom, W3X: A Cost-Effective Post-CCSD(T) Composite Procedure Journal of Chemical Theory and Computation. ,vol. 9, pp. 4769- 4778 ,(2013) , 10.1021/CT4005323
R. A. Kendall, thom H. Dunning, Jr., Robert J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions Journal of Chemical Physics. ,vol. 96, pp. 6796- 6806 ,(1992) , 10.1063/1.462569
Jong-Won Song, Takao Tsuneda, Takeshi Sato, Kimihiko Hirao, Calculations of alkane energies using long-range corrected DFT combined with intramolecular van der Waals correlation. Organic Letters. ,vol. 12, pp. 1440- 1443 ,(2010) , 10.1021/OL100082Z
Amir Karton, Elena Rabinovich, Jan M. L. Martin, Branko Ruscic, W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions Journal of Chemical Physics. ,vol. 125, pp. 144108- 144108 ,(2006) , 10.1063/1.2348881
Matthew D. Wodrich, Clémence Corminboeuf, Paul von Ragué Schleyer, Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Organic Letters. ,vol. 8, pp. 3631- 3634 ,(2006) , 10.1021/OL061016I