作者: Lars Pastewka , Till Junge , Jan Zeman , Ivana Pultarová , Martin Ladecký
DOI:
关键词: Fast Fourier transform 、 Compatibility (mechanics) 、 Ringing artifacts 、 Basis function 、 Finite element method 、 Mathematics 、 Convergence (routing) 、 Applied mathematics 、 Homogenization (chemistry) 、 Projection (linear algebra)
摘要: Micromechanical homogenization is often carried out with Fourier-accelerated methods that are prone to ringing artifacts. We here generalize the compatibility projection introduced by Vond\v{r}ejc, Zeman & Marek [Comput. Math. Appl. 68, 156 (2014)] beyond the Fourier basis. In particular, we formulate compatibility for linear finite elements while maintaining Fourier-acceleration and fast convergence properties of the original method. demonstrate this eliminates artifacts and yields an efficient computational scheme equivalent to canonical finite-element formulations on fully structured grids.