On the Laplace Transform of the Lognormal Distribution

作者: Søren Asmussen , Jens Ledet Jensen , Leonardo Rojas-Nandayapa

DOI: 10.1007/S11009-014-9430-7

关键词: Inverse Laplace transformMoment-generating functionCharacteristic function (probability theory)MathematicsLambert W functionLaplace transform applied to differential equationsMathematical analysisLaplace's methodTwo-sided Laplace transformLaplace transform

摘要: Integral transforms of the lognormal distribution are great importance in statis- tics and probability, yet closed-form expressions do not exist. A wide variety methods have been employed to provide approximations, both analytical numerical. In this paper, we analyse a approximation � L(θ ) Laplace transform which is obtained via modified version Laplace's method. This approximation, given terms Lambert W (·) function, tractable enough for applications. We prove that asymptotically equivalent as θ →∞ . apply result construct reliable Monte Carlo estimator it be logarithmically efficient rare event sense

参考文章(28)
C. C. Heyde, On a Property of the Lognormal Distribution Journal of the royal statistical society series b-methodological. ,vol. 25, pp. 16- 18 ,(1963) , 10.1007/978-1-4419-5823-5_6
Søren Asmussen, Peter W. Glynn, Stochastic Simulation: Algorithms and Analysis ,(2008)
Christopher G. Small, Expansions and Asymptotics for Statistics Chapman and Hall/CRC. ,(2010) , 10.1201/9781420011029
Serguei Foss, Dmitry Korshunov, Stanley Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions ,(2011)
The characteristic function LNES. ,vol. 87, pp. 59- 66 ,(2000) , 10.1007/BFB0048760
Samuel Kotz, N. Balakrishnan, Norman Lloyd Johnson, Continuous univariate distributions ,(1994)
D. B. Owen, Handbook of Mathematical Functions with Formulas Technometrics. ,vol. 7, pp. 78- 79 ,(1965) , 10.1080/00401706.1965.10490234
Milton Abramowitz, Irene A. Stegun, David Miller, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) Journal of Applied Mechanics. ,vol. 32, pp. 239- 239 ,(1965) , 10.1115/1.3625776
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the Lambert W function Advances in Computational Mathematics. ,vol. 5, pp. 329- 359 ,(1996) , 10.1007/BF02124750