Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment

作者: Anne Poder Andersen , José M. A. Moreira , Stine Falsig Pedersen

DOI: 10.1098/RSTB.2013.0098

关键词: Cell biologyCancerContext (language use)Cancer cellStromal cellIntracellular pHTumor microenvironmentHomeostasisSignal transductionBiology

摘要: Major changes in intra- and extracellular pH homoeostasis are shared features of most solid tumours. These stem large part from the metabolic shift cancer cells towards glycolytic metabolism other processes associated with net acid production. In combination oncogenic signalling impact factors tumour microenvironment, this upregulates acid-extruding plasma membrane transport proteins which maintain intracellular normal or even more alkaline compared that cells, while turn acidifying external microenvironment. Mounting evidence strongly indicates contributes significantly to development by favouring e.g. cell migration, invasion chemotherapy resistance. Finally, still under-explored, it seems likely non-cancer microenvironment also exhibit altered regulation may contribute their malignant properties. Thus, physical stromal within undergo important reciprocal interactions modulate profile, severely impacting on course progression. Here, we summarize recent knowledge placing context regulation, discuss how interfering these properties be exploited clinically.

参考文章(143)
Else K. Hoffmann, Ian H. Lambert, Stine F. Pedersen, Physiology of cell volume regulation in vertebrates. Physiological Reviews. ,vol. 89, pp. 193- 277 ,(2009) , 10.1152/PHYSREV.00037.2007
Stine Falsig Pedersen, Christian Stock, None, Ion Channels and Transporters in Cancer: Pathophysiology, Regulation, and Clinical Potential Cancer Research. ,vol. 73, pp. 1658- 1661 ,(2013) , 10.1158/0008-5472.CAN-12-4188
Kyriakos P. Papadopoulos, Sanjay Goel, Murali Beeram, Alvin Wong, Kavita Desai, Missak Haigentz, María L. Milián, Sridhar Mani, Anthony Tolcher, Alshad S. Lalani, John Sarantopoulos, A Phase 1 Open-Label, Accelerated Dose-Escalation Study of the Hypoxia-Activated Prodrug AQ4N in Patients with Advanced Malignancies Clinical Cancer Research. ,vol. 14, pp. 7110- 7115 ,(2008) , 10.1158/1078-0432.CCR-08-0483
Antoun El Chemaly, Yoshifumi Okochi, Mari Sasaki, Serge Arnaudeau, Yasushi Okamura, Nicolas Demaurex, VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification Journal of Experimental Medicine. ,vol. 207, pp. 129- 139 ,(2010) , 10.1084/JEM.20091837
Robert A. Gatenby, Robert J. Gillies, Why do cancers have high aerobic glycolysis? Nature Reviews Cancer. ,vol. 4, pp. 891- 899 ,(2004) , 10.1038/NRC1478
Matthew G. Vander Heiden, Targeting cancer metabolism: a therapeutic window opens Nature Reviews Drug Discovery. ,vol. 10, pp. 671- 684 ,(2011) , 10.1038/NRD3504
Charles C. Wykoff, Nigel Beasley, Peter H. Watson, Leticia Campo, Stephen K. Chia, Ruth English, Jaromir Pastorek, William S. Sly, Peter Ratcliffe, Adrian L. Harris, Expression of the Hypoxia-Inducible and Tumor-Associated Carbonic Anhydrases in Ductal Carcinoma in Situ of the Breast The American Journal of Pathology. ,vol. 158, pp. 1011- 1019 ,(2001) , 10.1016/S0002-9440(10)64048-5
Erik Laughner, Panthea Taghavi, Kelly Chiles, Patrick C. Mahon, Gregg L. Semenza, HER2 (neu) Signaling Increases the Rate of Hypoxia-Inducible Factor 1α (HIF-1α) Synthesis: Novel Mechanism for HIF-1-Mediated Vascular Endothelial Growth Factor Expression Molecular and Cellular Biology. ,vol. 21, pp. 3995- 4004 ,(2001) , 10.1128/MCB.21.12.3995-4004.2001
E.-J. Yeo, Y.-S. Chun, Y.-S. Cho, J. Kim, J.-C. Lee, M.-S. Kim, J.-W. Park, YC-1: A Potential Anticancer Drug Targeting Hypoxia-Inducible Factor 1 Journal of the National Cancer Institute. ,vol. 95, pp. 516- 525 ,(2003) , 10.1093/JNCI/95.7.516