Structure and properties of clinical coralline implants measured via 3D imaging and analysis

作者: M KNACKSTEDT , C ARNS , T SENDEN , K GROSS

DOI: 10.1016/J.BIOMATERIALS.2005.12.016

关键词: Thermal diffusivityPorous mediumPorosityTortuosityBiomedical engineeringElastic modulusMedical imagingGonioporaMaterials scienceTomography

摘要: The development and design of advanced porous materials for biomedical applications requires a thorough understanding how material structure impacts on mechanical transport properties. This paper illustrates 3D imaging analysis study two clinically proven coral bone graft samples (Porites Goniopora). Images are obtained from X-ray micro-computed tomography (micro-CT) at resolution 16.8 microm. A visual comparison the images shows very different structure; Porites has homogeneous consistent pore size while Goniopora bimodal strongly disordered structure. number structural characteristics measured directly including volume-to-surface-area, solid distributions, chord length measurements tortuosity. Computational results made digitized tomographic presented permeability, diffusivity elastic modulus samples. allow one to quantify differences between digital can provide more assessment biomaterial wall thickness, local flow, properties diffusion pathways. We discuss implications these optimal scaffold tissue ingrowth.

参考文章(48)
Gary Mavko, Tapan Mukerji, Jack Dvorkin, The Rock Physics Handbook The Rock Physics Handbook. pp. 339- ,(2020) , 10.1017/9781108333016
E White, E C Shors, Biomaterial aspects of Interpore-200 porous hydroxyapatite Dental Clinics of North America. ,vol. 30, pp. 49- 67 ,(1986)
Sarah Cartmell, Kimberly Huynh, Angela Lin, Srinidhi Nagaraja, Robert Guldberg, Quantitative microcomputed tomography analysis of mineralization within three-dimensional scaffolds in vitro. Journal of Biomedical Materials Research Part A. ,vol. 69, pp. 97- 104 ,(2004) , 10.1002/JBM.A.20118
A. S. Dagli, Y. Akalin, H. Bilgili, S. Seckin, S. Ensari, Correction of saddle nose deformities by coral implantation. European Archives of Oto-rhino-laryngology. ,vol. 254, pp. 274- 276 ,(1997) , 10.1007/BF02905986
Bruno Ferréol, Daniel H. Rothman, Lattice-Boltzmann simulations of flow through Fontainebleau sandstone Transport in Porous Media. ,vol. 20, pp. 3- 20 ,(1995) , 10.1007/978-94-017-2372-5_1
J.-F. Thovert, F. Yousefian, P. Spanne, C. G. Jacquin, P. M. Adler, Grain reconstruction of porous media: Application to a low-porosity Fontainebleau sandstone Physical Review E. ,vol. 63, pp. 061307- 061307 ,(2001) , 10.1103/PHYSREVE.63.061307
M. Roudier, C. Bouchon, J. L. Rouvillain, J. Amédée, R. Bareille, F. Rouais, J. Ch. Fricain, B. Dupuy, P. Kien, R. Jeandot, B. Basse-Cathalinat, The resorption of bone‐implanted corals varies with porosity but also with the host reaction Journal of Biomedical Materials Research. ,vol. 29, pp. 909- 915 ,(1995) , 10.1002/JBM.820290802
Barbara D Boyan, Thomas W Hummert, David D Dean, Zvi Schwartz, Role of material surfaces in regulating bone and cartilage cell response Biomaterials. ,vol. 17, pp. 137- 146 ,(1996) , 10.1016/0142-9612(96)85758-9