Confocal Bragg ptychography for bulk specimens: a numerical demonstration.

作者: Anders Filsøe Pedersen , Virginie Chamard , Henning Friis Poulsen

DOI: 10.1364/OE.391282

关键词: Optical axisOpticsDiffractionNumerical aperturePencil (optics)Materials scienceImage resolutionImage planePupil functionPtychography

摘要: We report on a new X-ray imaging method, which generalizes Bragg ptychography to 3D mapping of embedded crystalline volumes within thick specimens. The sample is probed by pencil beam. diffracted beam magnified an objective and passes through slit in the image plane be monitored 2D detector far-field plane. dimensions incoming opening define confocal volume. Scanning with respect this probe volume, iterative oversampling routine used reconstruct shape projected displacement field extended internal volumes. This takes into account pupil function known aberrations lens. demonstrate method numerical study 3.5 µm grain comprising wall edge dislocations. With volume ∼0.12 3 compound refractive lens aperture 0.49×10 −3 as objective, dislocations are fully resolved sensitivity ∼10 pm. spatial resolution 26×27×123 nm (rms), poor along optical axis being limited size. four times larger aperture, becomes 16×8×123 (rms). found not critical.

参考文章(31)
Andrzej Andrejczuk, Jacek Krzywinski, Saša Bajt, Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms. ,vol. 364, pp. 60- 64 ,(2015) , 10.1016/J.NIMB.2015.05.024
S. O. Hruszkewycz, M. Allain, M. V. Holt, C. E. Murray, J. R. Holt, P. H. Fuoss, V. Chamard, High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography Nature Materials. ,vol. 16, pp. 244- 251 ,(2017) , 10.1038/NMAT4798
Jianwei Miao, Pambos Charalambous, Janos Kirz, David Sayre, Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens Nature. ,vol. 400, pp. 342- 344 ,(1999) , 10.1038/22498
V. Chamard, J. Stangl, G. Carbone, A. Diaz, G. Chen, C. Alfonso, C. Mocuta, T. H. Metzger, Three-dimensional x-ray Fourier transform holography: the Bragg case. Physical Review Letters. ,vol. 104, pp. 165501- 165501 ,(2010) , 10.1103/PHYSREVLETT.104.165501
Mark A. Pfeifer, Garth J. Williams, Ivan A. Vartanyants, Ross Harder, Ian K. Robinson, Three-dimensional mapping of a deformation field inside a nanocrystal Nature. ,vol. 442, pp. 63- 66 ,(2006) , 10.1038/NATURE04867
Henning Friis Poulsen, An introduction to three-dimensional X-ray diffraction microscopy Journal of Applied Crystallography. ,vol. 45, pp. 1084- 1097 ,(2012) , 10.1107/S0021889812039143
Wolfgang Ludwig, Søeren Schmidt, Erik Mejdal Lauridsen, Henning Friis Poulsen, X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case Journal of Applied Crystallography. ,vol. 41, pp. 302- 309 ,(2008) , 10.1107/S0021889808001684
H. M. L. Faulkner, J. M. Rodenburg, Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Physical Review Letters. ,vol. 93, pp. 023903- ,(2004) , 10.1103/PHYSREVLETT.93.023903
D. Sayre, Some implications of a theorem due to Shannon Acta Crystallographica. ,vol. 5, pp. 843- 843 ,(1952) , 10.1107/S0365110X52002276
Sergey A. Alexandrov, Timothy R. Hillman, Thomas Gutzler, David D. Sampson, Synthetic aperture fourier holographic optical microscopy. Physical Review Letters. ,vol. 97, pp. 168102- 168102 ,(2006) , 10.1103/PHYSREVLETT.97.168102