Automates cellulaires probabilistes et mesures spécifiques sur des espaces symboliques

作者: Irène Marcovici

DOI:

关键词: Invariant measureErgodic theoryCellular automatonMarkov chainProbability theoryMathematicsErgodicityRandom walkDiscrete mathematicsSubshift of finite type

摘要: A probabilistic cellular automaton (PCA) is a Markov chain on symbolic space. Time discrete, cells evolve synchronously, and the new content of each cell randomly chosen, independently others, according to distribution given by states in finite neighbourhood cell. PCA are used as computational models computer science, also modelling tool life sciences physics. Moreover, they appear different contexts probability theory combinatorics. ergodic if it has unique attractive invariant measure. We prove that for deterministic CA, ergodicity equivalent nilpotency. This provides proof undecidable. While measure an CA trivial, can be very complex. describe algorithm perfectly sample this certain cases. focus specific families PCA, having Bernoulli or measures, we study properties their space-time diagrams. solve density classification problem infinite lattices dimension greater than equal 2 trees. Finally, problems. give combinatorial characterisation limit measures random walks free products groups. maximal entropy subshift type. play again role last work.

参考文章(68)
François Ledrappier, Some asymptotic properties of random walks on free groups American Mathematical Society. pp. 117- 152 ,(2001) , 10.1090/CRMP/028/05
Pierre Guillon, Gaétan Richard, Nilpotency and Limit Sets of Cellular Automata mathematical foundations of computer science. ,vol. 5162, pp. 375- 386 ,(2008) , 10.1007/978-3-540-85238-4_30
J. T. Cox, R. Durrett, Nonlinear Voter Models Birkhäuser, Boston, MA. pp. 189- 201 ,(1991) , 10.1007/978-1-4612-0459-6_8
N. B. Vasilyev, Bernoulli and Markov stationary measures in discrete local interactions Lecture Notes in Mathematics. pp. 99- 112 ,(1978) , 10.1007/BFB0070087
Nazim Fatès, Stochastic Cellular Automata Solutions to the Density Classification Problem Theory of Computing Systems \/ Mathematical Systems Theory. ,vol. 53, pp. 223- 242 ,(2013) , 10.1007/S00224-012-9386-3
Munemi Miyamoto, An equilibrium state for a one-dimensional life game Journal of Mathematics of Kyoto University. ,vol. 19, pp. 525- 540 ,(1979) , 10.1215/KJM/1250522376
Martin Schüle, Thomas Ott, Ruedi Stoop, Computing with Probabilistic Cellular Automata international conference on artificial neural networks. pp. 525- 533 ,(2009) , 10.1007/978-3-642-04277-5_53
Hans-Otto Georgii, Gibbs Measures and Phase Transitions ,(1988)
Nazim Fatès, Asynchronism Induces Second Order Phase Transitions in Elementary Cellular Automata Journal of Cellular Automata. ,vol. 4, pp. 21- 38 ,(2008)