作者: Takahiro Kitayama
DOI: 10.1090/S0002-9939-10-10418-3
关键词: Circle-valued Morse theory 、 Morse theory 、 Algebra 、 Pure mathematics 、 Laurent polynomial 、 Torsion (algebra) 、 Mathematics 、 Abelian group 、 Riemann zeta function 、 Algebraic number 、 Lens space
摘要: Given a circle-valued Morse function of closed oriented manifold, we prove that Reidemeister torsion over non-commutative formal Laurent polynomial ring equals the product certain Lefschetz-type zeta and algebraic Novikov complex ring. This paper gives generalization result Hutchings Lee on abelian coefficients to case skew fields. As consequence obtain theoretical dynamical description higher-order torsion.