Non-commutative Reidemeister torsion and Morse-Novikov theory

作者: Takahiro Kitayama

DOI: 10.1090/S0002-9939-10-10418-3

关键词: Circle-valued Morse theoryMorse theoryAlgebraPure mathematicsLaurent polynomialTorsion (algebra)MathematicsAbelian groupRiemann zeta functionAlgebraic numberLens space

摘要: Given a circle-valued Morse function of closed oriented manifold, we prove that Reidemeister torsion over non-commutative formal Laurent polynomial ring equals the product certain Lefschetz-type zeta and algebraic Novikov complex ring. This paper gives generalization result Hutchings Lee on abelian coefficients to case skew fields. As consequence obtain theoretical dynamical description higher-order torsion.

参考文章(24)
Andrei V. Pajitnov, Circle-Valued Morse Theory ,(2006)
Boju Jiang, Shicheng Wang, Twisted Topological Invariants Associated with Representations Springer Netherlands. pp. 211- 227 ,(1993) , 10.1007/978-94-011-1695-4_11
Vladimir Turaev, Torsions of 3-dimensional Manifolds ,(2003)
Donald S. Passman, The Algebraic Structure of Group Rings ,(1977)
Takuya Sakasai, Hiroshi Goda, Homology cylinders in knot theory ,(2008)
Ross Geoghegan, Andrew Nicas, Trace and torsion in the theory of flows Topology. ,vol. 33, pp. 683- 719 ,(1994) , 10.1016/0040-9383(94)90004-3