A non-parametric approach for accurate contextual classification of LIDAR and imagery data fusion

作者: Jorge Garcia-Gutierrez , Daniel Mateos-Garcia , Jose C. Riquelme-Santos

DOI: 10.1007/978-3-642-28931-6_44

关键词: Lidark-nearest neighbors algorithmSupervised learningContextual image classificationSupport vector machinePattern recognitionComputer scienceSpatial analysisFeature extractionArtificial intelligenceSensor fusion

摘要: Light Detection and Ranging (LIDAR) has become a very important tool to many environmental applications. This work proposes use LIDAR image data fusion develop high-resolution thematic maps. A novel methodology is presented which starts building matrix of statistics from spectral spatial information by feature extraction on the available bands (RGB images, intensity height LIDAR). Then, contextual classification applied generate final map using support vector machine (SVM) classify every cell nearest neighbor (NN) rule sequentially reclassify each cell. The results obtained this method, called SVMNNS (SVM NN Stacking), are compared with non-contextual SVMs. It shown that obtains best when real Iberian peninsula.

参考文章(17)
Jorge Garcia-Gutierrez, Daniel Mateos-Garcia, Jose C. Riquelme-Santos, A SVM and k-NN restricted stacking to improve land use and land cover classification hybrid artificial intelligence systems. ,vol. 6077, pp. 493- 500 ,(2010) , 10.1007/978-3-642-13803-4_61
Jochem Verrelst, Gertjan W. Geerling, Karle V. Sykora, Jan G.P.W. Clevers, Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data International Journal of Applied Earth Observation and Geoinformation. ,vol. 11, pp. 83- 94 ,(2009) , 10.1016/J.JAG.2008.09.001
J ANDERSON, L PLOURDE, M MARTIN, B BRASWELL, M SMITH, R DUBAYAH, M HOFTON, J BLAIR, Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest Remote Sensing of Environment. ,vol. 112, pp. 1856- 1870 ,(2008) , 10.1016/J.RSE.2007.09.009
Jorge García-Gutiérrez, Daniel Mateos-García, José C. Riquelme-Santos, EVOR-STACK: A label-dependent evolutive stacking on remote sensing data fusion Neurocomputing. ,vol. 75, pp. 115- 122 ,(2012) , 10.1016/J.NEUCOM.2011.02.020
Cheng-Lung Huang, Chieh-Jen Wang, None, A GA-based feature selection and parameters optimizationfor support vector machines Expert Systems With Applications. ,vol. 31, pp. 231- 240 ,(2006) , 10.1016/J.ESWA.2005.09.024
Alexander Brzank, Christian Heipke, Jens Goepfert, Uwe Soergel, Aspects of generating precise digital terrain models in the Wadden Sea from lidar–water classification and structure line extraction Isprs Journal of Photogrammetry and Remote Sensing. ,vol. 63, pp. 510- 528 ,(2008) , 10.1016/J.ISPRSJPRS.2008.02.002
Nitesh V. Chawla, Nathalie Japkowicz, Aleksander Kotcz, Editorial ACM SIGKDD Explorations Newsletter. ,vol. 6, pp. 1- 6 ,(2004) , 10.1145/1007730.1007733
B. Koetz, F. Morsdorf, S. van der Linden, T. Curt, B. Allgöwer, Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data Forest Ecology and Management. ,vol. 256, pp. 263- 271 ,(2008) , 10.1016/J.FORECO.2008.04.025
Bernhard Höfle, Norbert Pfeifer, Correction of laser scanning intensity data: Data and model-driven approaches Isprs Journal of Photogrammetry and Remote Sensing. ,vol. 62, pp. 415- 433 ,(2007) , 10.1016/J.ISPRSJPRS.2007.05.008