Linear canonical Wigner distribution of noisy LFM signals via variance-SNR based inequalities system analysis

作者: Zhi-Chao Zhang , Zhi-Chao Zhang , Sheng-Zhou Qiang , Xi-Ya Shi , An-Yang Wu

DOI: 10.1016/J.IJLEO.2021.166712

关键词: Type (model theory)Applied mathematicsFree parameterFunction typeVariance (accounting)InequalityWigner distribution functionCorrectnessMoment (mathematics)Mathematics

摘要: In consideration of the latest second-order moment variance type of signal-to-noise ratio (SNR), the so-called variance-SNR, a new inequality model, namely, the variance-SNR …

参考文章(35)
Stuart A. Collins, Lens-System Diffraction Integral Written in Terms of Matrix Optics Journal of the Optical Society of America. ,vol. 60, pp. 1168- 1177 ,(1970) , 10.1364/JOSA.60.001168
M. Moshinsky, C. Quesne, Linear Canonical Transformations and Their Unitary Representations Journal of Mathematical Physics. ,vol. 12, pp. 1772- 1780 ,(1971) , 10.1063/1.1665805
Zhichao Zhang, Maokang Luo, New Integral Transforms for Generalizing the Wigner Distribution and Ambiguity Function IEEE Signal Processing Letters. ,vol. 22, pp. 460- 464 ,(2015) , 10.1109/LSP.2014.2362616
Soo-Chang Pei, Jian-Jiun Ding, Relations between fractional operations and time-frequency distributions, and their applications IEEE Transactions on Signal Processing. ,vol. 49, pp. 1638- 1655 ,(2001) , 10.1109/78.934134
Rui-Feng Bai, Bing-Zhao Li, Qi-Yuan Cheng, Wigner-Ville Distribution Associated with the Linear Canonical Transform Journal of Applied Mathematics. ,vol. 2012, pp. 1- 14 ,(2012) , 10.1155/2012/740161
Ljubisa Stankovic, Srdjan Stankovic, Milos Dakovic, From the STFT to the Wigner Distribution [Lecture Notes] IEEE Signal Processing Magazine. ,vol. 31, pp. 163- 174 ,(2014) , 10.1109/MSP.2014.2301791
S.B. Hearon, M.G. Amin, Minimum-variance time-frequency distribution kernels IEEE Transactions on Signal Processing. ,vol. 43, pp. 1258- 1262 ,(1995) , 10.1109/78.382412