Do projections stay close together?

作者: Bernd Kirchheim , Eva Kopecká , Stefan Müller

DOI: 10.1016/J.JMAA.2008.09.039

关键词: CombinatoricsRate of convergenceMathematicsOrthographic projectionSequenceOrbit (control theory)Mathematical analysisHilbert spaceLinear subspaceZero (complex analysis)Iterated functionApplied mathematicsAnalysis

摘要: Abstract We estimate the rate of convergence products projections on K intersecting lines in R d . More generally, consider orbit a point under any sequence orthogonal arbitrary Assume that sum squares distances consecutive iterates is less than e. show if e tends to zero, then diameter zero uniformly for all families L fixed number lines. relate this result questions concerning finite closed subspaces l 2

参考文章(7)
R Aharoni, P Duchet, B Wajnryb, Successive Projections on Hyperplanes Journal of Mathematical Analysis and Applications. ,vol. 103, pp. 134- 138 ,(1984) , 10.1016/0022-247X(84)90163-X
Roy Meshulam, On products of projections Discrete Mathematics. ,vol. 154, pp. 307- 310 ,(1996) , 10.1016/0012-365X(95)00055-2
John M Dye, Simeon Reich, On the unrestricted iteration of projections in Hilbert space Journal of Mathematical Analysis and Applications. ,vol. 156, pp. 101- 119 ,(1991) , 10.1016/0022-247X(91)90385-D
John Von Neumann, On Rings of Operators. Reduction Theory The Annals of Mathematics. ,vol. 50, pp. 401- ,(1949) , 10.2307/1969463
F. J. Murray, J. v. Neumann, On Rings of Operators The Annals of Mathematics. ,vol. 37, pp. 116- 229 ,(1936) , 10.2307/1968693
Imre Bárány, Richard Pollack, Jacob E. Goodman, Do Projections Go to Infinity Applied Geometry And Discrete Mathematics. pp. 51- 62 ,(1990)