作者: Bernd Kirchheim , Eva Kopecká , Stefan Müller
DOI: 10.1016/J.JMAA.2008.09.039
关键词: Combinatorics 、 Rate of convergence 、 Mathematics 、 Orthographic projection 、 Sequence 、 Orbit (control theory) 、 Mathematical analysis 、 Hilbert space 、 Linear subspace 、 Zero (complex analysis) 、 Iterated function 、 Applied mathematics 、 Analysis
摘要: Abstract We estimate the rate of convergence products projections on K intersecting lines in R d . More generally, consider orbit a point under any sequence orthogonal arbitrary Assume that sum squares distances consecutive iterates is less than e. show if e tends to zero, then diameter zero uniformly for all families L fixed number lines. relate this result questions concerning finite closed subspaces l 2