Order-k voronoi diagrams of sites with additive weights in the plane

作者: Harald Rosenberger

DOI: 10.1007/BF01759056

关键词: Discrete mathematicsLloyd's algorithmMathematicsFortune's algorithmPower diagramCentroidal Voronoi tessellationCombinatoricsVoronoi diagramDiagramMathematical diagramWeighted Voronoi diagram

摘要: It is shown that the order-k Voronoi diagram of n sites with additive weights in plane has at most (4kź2)(nźk) vertices, (6kź3)(nźk) edges, and (2kź1)(nźitk) + 1 regions. These bounds are approximately same as ones known for unweighted diagrams. Furthermore, tight upper on number edges vertices given case every weighted site a nonempty region order-1 diagram. The proof based new algorithm construction these diagrams which generalizes plane-sweep developed by Steven Fortune. time-complexityO(k2n logn) space-complexityO(kn). only nontrivial constructing order-kc withadditive weights. fairly simple practical interest also special sites.

参考文章(12)
H. Edelsbrunner, N. Hasan, R. Seidel, X.J. Shen, CIRCLES THROUGH TWO POINTS THAT ALWAYS ENCLOSE MANY POINTS Geometriae Dedicata. ,vol. 32, pp. 1- 12 ,(1989) , 10.1007/BF00181432
Der-Tsai Lee, Robert L Drysdale, III, Generalization of Voronoi Diagrams in the Plane SIAM Journal on Computing. ,vol. 10, pp. 73- 87 ,(1981) , 10.1137/0210006
Herbert Edelsbrunner, Algorithms in Combinatorial Geometry ,(1987)
Bernard Chazelle, Herbert Edelsbrunner, An improved algorithm for constructing kth-order Voronoi diagrams symposium on computational geometry. pp. 228- 234 ,(1985) , 10.1145/323233.323263
Leonidas Guibas, Jorge Stolfi, Primitives for the manipulation of general subdivisions and the computation of Voronoi ACM Transactions on Graphics. ,vol. 4, pp. 74- 123 ,(1985) , 10.1145/282918.282923
H. Edelsbrunner, E. P. Mücke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms symposium on computational geometry. pp. 118- 133 ,(1988) , 10.1145/73393.73406
S Fortune, A sweepline algorithm for Voronoi diagrams Proceedings of the second annual symposium on Computational geometry - SCG '86. pp. 313- 322 ,(1986) , 10.1145/10515.10549
Der-Tsai Lee, On k-Nearest Neighbor Voronoi Diagrams in the Plane IEEE Transactions on Computers. ,vol. 31, pp. 478- 487 ,(1982) , 10.1109/TC.1982.1676031
Lee, Silio, An Optimal Illumination Region Algorithm for Convex Polygons IEEE Transactions on Computers. ,vol. 31, pp. 1225- 1227 ,(1982) , 10.1109/TC.1982.1675946
H. Edelsbrunner, Edge-skeletons in arrangements with applications Algorithmica. ,vol. 1, pp. 93- 109 ,(1986) , 10.1007/BF01840438