作者: E.A. Galperin , I. Galperin
DOI: 10.1016/J.CAMWA.2006.08.007
关键词: Small sample 、 Algorithm 、 Global optimization 、 Mathematics 、 Multiple integration 、 Projection (set theory) 、 Random number generation 、 Plane (geometry) 、 Mathematical optimization
摘要: Nonstatistical notions of uniformity suitable for small samples are proposed and studied. New algorithms presented generation quasi-random points good with respect to distance, plane projection, or section uniformity. Examples visual evaluation in on the screen computers. The methods can be used lattices nonconvex global optimization, multiple integration, other applications.