Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically biased graphene sheets

作者: J. S. Gómez-Díaz , J. Perruisseau-Carrier

DOI: 10.1063/1.4769749

关键词: Transverse planeMagnetic fieldQuasiparticleGraphene nanoribbonsCondensed matter physicsGraphenePlasmonField (physics)Propagation constantMaterials science

摘要: The propagation of plasmons on magnetically biased graphene sheets is addressed. analysis based the transverse resonance method extended to handle conductivity tensor and allows easily accounting for substrate effects. A transcendental equation obtained constant resulting hybrid magnetic-transverse electric mode. closed-form approximate expression a layer sandwitched between two different media also provided. Application shows that presence magnetic field leads extreme localization, namely, very small guided wavelength, as compared with usual in or noble metals. extent localization its frequency can be dynamically controlled by modifying applied magnetostatic electrostatic bias field, respectively. These features could enable device miniaturization enhanced resolution sensing applications.

参考文章(35)
S. Das Sarma, E. H. Hwang, Dielectric function, screening, and plasmons in 2D graphene arXiv: Strongly Correlated Electrons. ,(2006) , 10.1103/PHYSREVB.75.205418
George W. Hanson, Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene Journal of Applied Physics. ,vol. 103, pp. 064302- ,(2008) , 10.1063/1.2891452
JB Pendry, L Martin-Moreno, FJ Garcia-Vidal, Mimicking Surface Plasmons with Structured Surfaces Science. ,vol. 305, pp. 847- 848 ,(2004) , 10.1126/SCIENCE.1098999
Marin SoljaČiĆ, J. D. Joannopoulos, Enhancement of nonlinear effects using photonic crystals. Nature Materials. ,vol. 3, pp. 211- 219 ,(2004) , 10.1038/NMAT1097
Y. Wang, E. W. Plummer, K. Kempa, Foundations of Plasmonics Advances in Physics. ,vol. 60, pp. 799- 898 ,(2011) , 10.1080/00018732.2011.621320
E. V. Gorbar, V. P. Gusynin, V. A. Miransky, I. A. Shovkovy, Magnetic field driven metal-insulator phase transition in planar systems Physical Review B. ,vol. 66, pp. 045108- ,(2002) , 10.1103/PHYSREVB.66.045108
Justin Elser, Alexander A. Govyadinov, Ivan Avrutsky, Ildar Salakhutdinov, Viktor A. Podolskiy, Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation Journal of Nanomaterials. ,vol. 2007, pp. 7- 7 ,(2007) , 10.1155/2007/79469
Marinko Jablan, Hrvoje Buljan, Marin Soljačić, Plasmonics in graphene at infrared frequencies Physical Review B. ,vol. 80, pp. 245435- ,(2009) , 10.1103/PHYSREVB.80.245435
Johan Christensen, Alejandro Manjavacas, Sukosin Thongrattanasiri, Frank H. L. Koppens, F. Javier García de Abajo, Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano. ,vol. 6, pp. 431- 440 ,(2012) , 10.1021/NN2037626
G. Lovat, Equivalent Circuit for Electromagnetic Interaction and Transmission Through Graphene Sheets IEEE Transactions on Electromagnetic Compatibility. ,vol. 54, pp. 101- 109 ,(2012) , 10.1109/TEMC.2011.2169072