Homology Groups of Graphs

作者: Toshikazu Sunada

DOI: 10.1007/978-4-431-54177-6_4

关键词: RectangleCellular homologyPolyhedronCombinatoricsAlgebraic numberMathematicsSingular homologyBetti numberBase (topology)Geometric algebra

摘要: Ancient Greek mathematicians tried to establish their theory of area and volume by means “geometric algebra”. Namely, in order compare the (or volume) two figures, they made up an algebraic system with addition subtraction performed among a class e.g., polygons or polyhedra. Figure 4.1 illustrates way prove using geometric algebra that triangle is equal one-half rectangle same base height.

参考文章(99)
Tomoyuki Shirai, Motoko Kotani, Yusuke Higuchi, Atsusi Katsuda, SPECTRAL GEOMETRY OF CRYSTAL LATTICES ,(2008)
Toshikazu Sunada, Geodesic Flows and Geodesic Random Walks Geometry of Geodesics and Related Topics. pp. 47- 85 ,(1984) , 10.2969/ASPM/00310047
Toshikazu Sunada, Fundamental groups and Laplacians Geometry and Analysis on Manifolds. pp. 248- 277 ,(1988) , 10.1007/BFB0083059
Toshikazu Sunada, L-functions in geometry and some applications Springer, Berlin, Heidelberg. pp. 266- 284 ,(1986) , 10.1007/BFB0075662
Toshikazu Sunada, Motoko Kotani, Tomoyuki Shirai, Discrete Geometric Analysis American Mathematical Society. ,vol. 347, ,(2004) , 10.1090/CONM/347
Chaim Goodman-Strauss, John Horton Conway, Heidi Burgiel, The Symmetries of Things ,(2008)
M. Bader, W. E. Klee, G. Thimm, The 3-regular nets with four and six vertices per unit cell Zeitschrift Fur Kristallographie. ,vol. 212, pp. 553- 558 ,(1997) , 10.1524/ZKRI.1997.212.8.553
Jacques Dixmier, Von Neumann Algebras ,(1981)