Discriminative k-shot learning using probabilistic models

作者: Matthias Bauer , Mateo Rojas-Carulla , Jakub Bartłomiej Świątkowski , Bernhard Schölkopf , Richard E Turner

DOI:

关键词: Contextual image classificationArtificial neural networkProbabilistic analysis of algorithmsArtificial intelligenceDiscriminative modelProbabilistic logicMachine learningProbabilistic relevance modelComputer scienceProbabilistic classificationStatistical modelProbabilistic CTLDivergence-from-randomness model

摘要: This paper introduces a probabilistic framework for k-shot image classification. The goal is to generalise from an initial large-scale classification task to a separate task comprising new …

参考文章(2)
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition computer vision and pattern recognition. pp. 770- 778 ,(2016) , 10.1109/CVPR.2016.90
Hugo Larochelle, Sachin Ravi, Optimization as a Model for Few-Shot Learning international conference on learning representations. ,(2017)