Matching nuts and bolts optimally

作者: Phillip G. Bradford

DOI:

关键词: NutDecision treeAsymptotically optimal algorithmNuts and boltsMathematicsAlgorithmMatching (graph theory)

摘要: The nuts and bolts problem is the following : Given a collection of n distinct sizes such that for each nut there exactly one matching bolt, find its corresponding bolt subject to restriction we can only compare bolts. That neither nuts, nor This humble on comparisons appears make this quite difficult solve. In paper, illustrate existence an algorithm solving makes O(n lg n) nutand-bolt comparisons. We show by showing certain expander-based comparator networks. Our asymptotically optimal in terms number nut-and-bolt it does. Another view result decision tree with depth solves problem.

参考文章(17)
Ian Parberry, Parallel Complexity Theory ,(1987)
Phillip Gnassi Bradford, Rudolf Fleischer, Matching nuts and bolts faster Untitled Event. pp. 402- 408 ,(1995)
Noga Alon, Eigen values and expanders Combinatorica. ,vol. 6, pp. 83- 96 ,(1986) , 10.1007/BF02579166
Nicholas Pippenger, Sorting and selecting in rounds SIAM Journal on Computing. ,vol. 16, pp. 1032- 1038 ,(1987) , 10.1137/0216066
J.I. Munro, M.S. Paterson, Selection and sorting with limited storage Theoretical Computer Science. ,vol. 12, pp. 315- 323 ,(1980) , 10.1016/0304-3975(80)90061-4
N. Alon, Y. Azar, Finding an approximate maximum SIAM Journal on Computing. ,vol. 18, pp. 258- 267 ,(1989) , 10.1137/0218017
Wayne Goddard, Claire Kenyon, Valerie King, Leonard J. Schulman, Optimal randomized algorithms for local sorting and set-maxima SIAM Journal on Computing. ,vol. 22, pp. 272- 283 ,(1993) , 10.1137/0222020
M. S. Paterson, Improved Sorting Networks with O(log n) Depth Algorithmica. ,vol. 5, pp. 75- 92 ,(1987) , 10.1007/BF01840378
János Komlós, Endre Szemerédi, Yuan Ma, Matching nuts and bolts in O(n log n) time symposium on discrete algorithms. pp. 232- 241 ,(1996) , 10.5555/313852.314069
M Ajtai, J Komlos, W L Steiger, E Szemeredi, Deterministic selection in O(loglog N) parallel time symposium on the theory of computing. pp. 188- 195 ,(1986) , 10.1145/12130.12149