The Density Theorem and the Homogeneous Approximation Property for Gabor Frames

作者: Christopher Heil

DOI: 10.1007/978-0-8176-4683-7_5

关键词: Discrete mathematicsMathematicsMathematical proofDensity theoremGabor–Wigner transformHomogeneousRiesz sequenceGabor frameLattice (order)Approximation property

摘要: The Density Theorem for Gabor frames is a fundamental result in time-frequency analysis. Beginning with Baggett’s proof that rectangular lattice system {e2πiβntg(t − αk)}n,k∈Z must be incomplete L2(R) whenever αβ > 1, the necessary conditions to complete, frame, Riesz basis, or sequence have been extended arbitrary lattices and beyond. first partial proofs of irregular were given by Landau 1993 Ramanathan Steger 1995. A key fact proved possess certain Homogeneous Approximation Property (HAP), consequence this HAP. This chapter provides brief history detailed account Steger. Furthermore, we show techniques can used give full general version higher dimensions finitely many generators.

参考文章(51)
Deguang Han, Jean-Pierre Gabardo, FRAME REPRESENTATIONS FOR GROUP-LIKE UNITARY OPERATOR SYSTEMS ,(2003)
Bachir Bekka, Square IntegrableRepresentations, vonNeumann Algebras and AnApplication to Gabor Analysis Journal of Fourier Analysis and Applications. ,vol. 10, pp. 325- 349 ,(2004) , 10.1007/S00041-004-3036-3
Youming Liu, Yang Wang, The Uniformity of Non-Uniform Gabor Bases Advances in Computational Mathematics. ,vol. 18, pp. 345- 355 ,(2003) , 10.1023/A:1021350103925
Karlheinz Gr�chenig, Irregular sampling of wavelet and short-time Fourier transforms Constructive Approximation. ,vol. 9, pp. 283- 297 ,(1993) , 10.1007/BF01198007
Ole Christensen, Sergio Favier, Felipe Zó, Irregular Wavelet Frames and Gabor Frames Approximation Theory and Its Applications. ,vol. 17, pp. 90- 101 ,(2001) , 10.1023/A:1015562614408
Wenchang Sun, Xingwei Zhou, Irregular Gabor frames and their stability Proceedings of the American Mathematical Society. ,vol. 131, pp. 2883- 2893 ,(2002) , 10.1090/S0002-9939-02-06931-9
Lawrence W. Baggett, Processing a radar signal and representations of the discrete Heisenberg group Colloquium Mathematicum. ,vol. 60, pp. 195- 203 ,(1990) , 10.4064/CM-60-61-1-195-203
Hans G. Feichtinger, Werner Kozek, Quantization of TF lattice-invariant operators on elementary LCA groups Gabor Analysis and Algorithms. pp. 233- 266 ,(1998) , 10.1007/978-1-4612-2016-9_8
A.J.E.M. Janssen, A density theorem for time-continuous filter banks Wavelet Analysis and its Applications. ,vol. 7, pp. 513- 523 ,(1998) , 10.1016/S1874-608X(98)80020-4