SO(d,1)-invariant Yang-Baxter operators and the dS/CFT correspondence

作者: Stefan Hollands , Gandalf Lechner

DOI: 10.1007/S00220-017-2942-6

关键词: Quantum field theorydS/CFT correspondencePhysicsUnitary representationSigma modelUnitarityPure mathematicsOperator algebraSpacetimeMathematical physicsCrossing

摘要: We propose a model for the dS/CFT correspondence. The is constructed in terms of "Yang-Baxter operator" $R$ unitary representations deSitter group $SO(d,1)$. This $R$-operator shown to satisfy Yang-Baxter equation, unitarity, as well certain analyticity relations, including particular crossing symmetry. With aid this operator we construct: a) A chiral (light-ray) conformal quantum field theory whose internal degrees freedom transform under given representation By analogy with $O(N)$ non-linear sigma model, CFT can be viewed propagating spacetime. b) (non-unitary) Euclidean on ${\mathbb R}^{d-1}$, where $SO(d,1)$ now acts by transformations (Euclidean) These two theories dual each other if interpret R}^{d-1}$ infinity Our constructions use semi-local generator fields defined and abstract methods from algebras.

参考文章(51)
Gandalf Lechner, Polarization-Free Quantum Fields and Interaction Letters in Mathematical Physics. ,vol. 64, pp. 137- 154 ,(2003) , 10.1023/A:1025772304804
Stefan Hollands, Massless Interacting Scalar Quantum Fields in deSitter Spacetime Annales Henri Poincaré. ,vol. 13, pp. 1039- 1081 ,(2012) , 10.1007/S00023-011-0140-1
Edward Witten, Anti de Sitter space and holography Advances in Theoretical and Mathematical Physics. ,vol. 2, pp. 253- 291 ,(1998) , 10.4310/ATMP.1998.V2.N2.A2
Klaus Fredenhagen, Joachim Hertel, Local algebras of observables and pointlike localized fields Communications in Mathematical Physics. ,vol. 80, pp. 555- 561 ,(1981) , 10.1007/BF01941663
Stefan Hollands, Correlators, Feynman Diagrams, and Quantum No-hair in deSitter Spacetime Communications in Mathematical Physics. ,vol. 319, pp. 1- 68 ,(2013) , 10.1007/S00220-012-1653-2
Alexander B. Zamolodchikov, Alexey B. Zamolodchikov, Relativistic factorized S-matrix in two dimensions having O(N) isotopic symmetry Nuclear Physics B. ,vol. 133, pp. 525- 535 ,(1978) , 10.1016/0550-3213(78)90239-0
Joseph J Bisognano, Eyvind H Wichmann, ON THE DUALITY CONDITION FOR QUANTUM FIELDS Journal of Mathematical Physics. ,vol. 17, pp. 303- 321 ,(1976) , 10.1063/1.522898
B. SCHROER AKEROYD, H.-W. WIESBROCK, MODULAR CONSTRUCTIONS OF QUANTUM FIELD THEORIES WITH INTERACTIONS Reviews in Mathematical Physics. ,vol. 12, pp. 301- 326 ,(2000) , 10.1142/S0129055X00000113
Konrad Schmüdgen, An Operator-Theoretic Approach to a Cocycle Problem in the Complex Plane Bulletin of The London Mathematical Society. ,vol. 27, pp. 341- 346 ,(1995) , 10.1112/BLMS/27.4.341
Henning Bostelmann, Operator product expansions as a consequence of phase space properties Journal of Mathematical Physics. ,vol. 46, pp. 082304- ,(2005) , 10.1063/1.2007567