Target-responsive vasoactive probes for ultrasensitive molecular imaging

作者: Robert Ohlendorf , Agata Wiśniowska , Mitul Desai , Ali Barandov , Adrian L. Slusarczyk

DOI: 10.1101/786079

关键词: AnalyteMolecular targetsChemistryVasoactiveFunction (biology)Deep tissueBiophysicsMolecular imaging

摘要: ABSTRACT The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family potent imaging probes that can be activated by interest deep tissue, providing basis mapping nanomolar-scale analytes without radiation heavy metal content associated with traditional agents. are reversibly-caged vasodilators induce responses detectable hemodynamic imaging; they constructed combining vasoactive peptides synthetic chemical appendages protein blocking domains. We use this architecture create ultrasensitive biotin-responsive agents, which apply wide-field rat brains using functional magnetic resonance imaging. also adapt sensor design detecting neurotransmitter dopamine, illustrating versatility approach addressing biologically important molecules.

参考文章(50)
Meir Wilchek, Edward A. Bayer, Introduction to avidin-biotin technology. Methods in Enzymology. ,vol. 184, pp. 5- 13 ,(1990) , 10.1016/0076-6879(90)84256-G
Aurelien F. Stalder, Michaela Schmidt, Andreas Greiser, Peter Speier, Jens Guehring, Matthias G. Friedrich, Edgar Mueller, Robust cardiac BOLD MRI using an fMRI‐like approach with repeated stress paradigms Magnetic Resonance in Medicine. ,vol. 73, pp. 577- 585 ,(2015) , 10.1002/MRM.25164
NM GREEN, AVIDIN. 3. THE NATURE OF THE BIOTIN-BINDING SITE. Biochemical Journal. ,vol. 89, pp. 599- 609 ,(1963) , 10.1042/BJ0890599
Patrick ROBBERECHT, Philippe GOURLET, Philippe NEEF, Marie-Claire WOUSSEN-COLLE, Marie-Claire VANDERMEERS-PIRET, Andre VANDERMEERS, Jean CHRISTOPHE, Structural requirements for the occupancy of pituitary adenylate‐cyclase‐activating‐peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB‐OK‐1 cell membranes FEBS Journal. ,vol. 207, pp. 239- 246 ,(1992) , 10.1111/J.1432-1033.1992.TB17043.X
Frank Fan, Brock F. Binkowski, Braeden L. Butler, Peter F. Stecha, Martin K. Lewis, Keith V. Wood, Novel genetically encoded biosensors using firefly luciferase. ACS Chemical Biology. ,vol. 3, pp. 346- 351 ,(2008) , 10.1021/CB8000414
S. Okumoto, L. L. Looger, K. D. Micheva, R. J. Reimer, S. J Smith, W. B. Frommer, Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors Proceedings of the National Academy of Sciences of the United States of America. ,vol. 102, pp. 8740- 8745 ,(2005) , 10.1073/PNAS.0503274102
Lisa A. Klumb, Vano Chu, Patrick S. Stayton, Energetic Roles of Hydrogen Bonds at the Ureido Oxygen Binding Pocket in the Streptavidin−Biotin Complex† Biochemistry. ,vol. 37, pp. 7657- 7663 ,(1998) , 10.1021/BI9803123
Robert M. De Lorimier, J. Jeff Smith, Mary A. Dwyer, Loren L. Looger, Kevin M. Sali, Chad D. Paavola, Shahir S. Rizk, Shamil Sadigov, David W. Conrad, Leslie Loew, Homme W. Hellinga, Construction of a fluorescent biosensor family Protein Science. ,vol. 11, pp. 2655- 2675 ,(2009) , 10.1110/PS.021860
Matthias A. Brun, Rudolf Griss, Luc Reymond, Kui-Thong Tan, Joachim Piguet, Ruud J.R.W. Peters, Horst Vogel, Kai Johnsson, Semisynthesis of fluorescent metabolite sensors on cell surfaces Journal of the American Chemical Society. ,vol. 133, pp. 16235- 16242 ,(2011) , 10.1021/JA206915M
Richard B Buxton, The physics of functional magnetic resonance imaging (fMRI) Reports on Progress in Physics. ,vol. 76, pp. 096601- 096601 ,(2013) , 10.1088/0034-4885/76/9/096601