作者: Julien Plu , Raphaël Troncy , Giuseppe Rizzo , Kévin Cousot , Mathieu Lafourcade
DOI:
关键词: Natural language processing 、 Path (graph theory) 、 Similarity (psychology) 、 Entity linking 、 Semantic network 、 Computer science 、 Word (computer architecture) 、 Newspaper 、 Set (abstract data type) 、 Artificial intelligence 、 Link (knot theory)
摘要: Entity linking systems typically rely on encyclopedic knowledge bases such as DBpedia or Freebase. In this paper, we use, instead, a French lexical-semantic network named JeuxDeMots to jointly type and link entities. Our approach combines word embeddings path-based similarity resulting in encouraging results over set of documents from the Le Monde newspaper.