Counterion influence on dynamic spin properties in a V(iv) complex.

作者: Chun-Yi Lin , Thacien Ngendahimana , Gareth R. Eaton , Sandra S. Eaton , Joseph M. Zadrozny

DOI: 10.1039/C8SC04122A

关键词: SpectroscopyPhysical chemistrySpin (physics)Ionic bondingMoleculeRelaxation (NMR)CounterionPulsed EPRElectron paramagnetic resonance

摘要: Using transition metal ions for spin-based applications, such as electron paramagnetic resonance imaging (EPRI) or quantum computation, requires a clear understanding of how local chemistry influences spin properties. Herein we report series four ionic complexes to provide the first systematic study one aspect on V(IV) – counterion. To do so, (Et3NH)2[V(C6H4O2)3] (1), (n-Bu3NH)2[V(C6H4O2)3] (2), (n-Hex3NH)2[V(C6H4O2)3] (3), and (n-Oct3NH)2[V(C6H4O2)3] (4) were probed by EPR spectroscopy in solid state solution. Room temperature, solution X-band (ca. 9.8 GHz) continuous-wave (CW-EPR) revealed an increasing linewidth with larger cations, likely counterion-controlled tumbling via ion pairing. In state, variable-temperature (5–180 K) 9.4 pulsed studies 1–4 o-terphenyl glass demonstrated no effect spin–lattice relaxation times (T1), indicating little role counterion this parameter. However, phase memory time (Tm) 1 below 100 K is markedly smaller than those 2–4. This result counterintuitive, 2–4 are relatively richer 1H nuclear spin, hence, expected have shorter Tm. Thus, these data suggest important methyl groups Tm, moreover instance lengthening Tm quantity molecule.

参考文章(63)
Larry Kevan, Robert N. Schwartz, Time domain electron spin resonance J. Wiley. ,(1979)
Johann P. Klare, Biomedical applications of electron paramagnetic resonance (EPR) spectroscopy Biomedical spectroscopy and imaging. ,vol. 1, pp. 101- 124 ,(2012) , 10.3233/BSI-2012-0010
Daniel Loss, Michael N. Leuenberger, Quantum computing in molecular magnets Nature. ,vol. 410, pp. 789- 793 ,(2001) , 10.1038/35071024
C. J. Wedge, G. A. Timco, E. T. Spielberg, R. E. George, F. Tuna, S. Rigby, E. J. L. McInnes, R. E. P. Winpenny, S. J. Blundell, A. Ardavan, Chemical Engineering of Molecular Qubits Physical Review Letters. ,vol. 108, pp. 107204- ,(2012) , 10.1103/PHYSREVLETT.108.107204
Lapo Bogani, Wolfgang Wernsdorfer, Molecular spintronics using single-molecule magnets. Nature Materials. ,vol. 7, pp. 179- 186 ,(2008) , 10.1038/NMAT2133
Carsten Milsmann, Aviva Levina, Hugh H. Harris, Garry J. Foran, Peter Turner, Peter A. Lay, Charge distribution in chromium and vanadium catecholato complexes: X-ray absorption spectroscopic and computational studies. Inorganic Chemistry. ,vol. 45, pp. 4743- 4754 ,(2006) , 10.1021/IC0603611
Arzhang Ardavan, Olivier Rival, John J. L. Morton, Stephen J. Blundell, Alexei M. Tyryshkin, Grigore A. Timco, Richard E. P. Winpenny, Will Spin-Relaxation Times in Molecular Magnets Permit Quantum Information Processing? Physical Review Letters. ,vol. 98, pp. 057201- ,(2007) , 10.1103/PHYSREVLETT.98.057201
Rebecca Husted, Jing-Long Du, Gareth R. Eaton, Sandra S. Eaton, Temperature and orientation dependence of electron spin relaxation in molybdenum(V) porphyrins Magnetic Resonance in Chemistry. ,vol. 33, ,(1995) , 10.1002/MRC.1260331312
Richard EP Winpenny, Quantum Information Processing Using Molecular Nanomagnets As Qubits Angewandte Chemie. ,vol. 47, pp. 7992- 7994 ,(2008) , 10.1002/ANIE.200802742
Katarzyna Grubel, William W. Brennessel, Brandon Q. Mercado, Patrick L. Holland, Alkali Metal Control over N–N Cleavage in Iron Complexes Journal of the American Chemical Society. ,vol. 136, pp. 16807- 16816 ,(2014) , 10.1021/JA507442B