Noncanonical Poisson brackets for elastic and micromorphic solids

作者: Kuo-Ching Chen

DOI: 10.1016/J.IJSOLSTR.2007.05.005

关键词: Hamiltonian (quantum mechanics)Cauchy distributionPoisson bracketMathematicsDirac delta functionMathematical analysisFirst class constraintFinite strain theoryState variableContinuum mechanics

摘要: This paper investigates the Lagrangian-to-Eulerian transformation approach to construction of noncanonical Poisson brackets for conservative part elastic solids and micromorphic solids. The Dirac delta function links Lagrangian canonical variables Eulerian state variables, producing from corresponding brackets. Specifying Hamiltonian functionals generates evolution equations these Different strain tensors, such as Green deformation tensor, Cauchy higher-order are appropriate in bracket formalism since they quantities composed gradient. also considers deformable directors comprise three density measures Furthermore, technique variable is discussed when a not conserved along with motion body.

参考文章(24)
Jerrold E. Marsden, Tudor S. Ratiu, Introduction to mechanics and symmetry Springer-Verlag. ,(1994) , 10.1007/978-0-387-21792-5
Brian J. Edwards, Antony N. Beris, Rotational Motion and Poisson Bracket Structures in Rigid Particle Systems and Anisotropic Fluid Theory Open Systems & Information Dynamics. ,vol. 5, pp. 333- 368 ,(1998) , 10.1023/A:1009691800395
Jerrold E. Marsden, Alan Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations Physica D: Nonlinear Phenomena. ,vol. 4, pp. 394- 406 ,(1981) , 10.1016/0167-2789(82)90043-4
Miroslav Grmela, Geometry of mesoscopic dynamics and thermodynamics Journal of Non-newtonian Fluid Mechanics. ,vol. 120, pp. 137- 147 ,(2004) , 10.1016/J.JNNFM.2003.11.009
W. Muschik, C. Papenfuss, H. Ehrentraut, A sketch of continuum thermodynamics Journal of Non-newtonian Fluid Mechanics. ,vol. 96, pp. 255- 290 ,(2001) , 10.1016/S0377-0257(00)00141-5
B J Edwards, A N Beris, Non-canonical Poisson bracket for nonlinear elasticity with extensions to viscoelasticity Journal of Physics A. ,vol. 24, pp. 2461- 2480 ,(1991) , 10.1088/0305-4470/24/11/014
Miroslav Grmela, Bracket formulation of dissipative fluid mechanics equations Physics Letters A. ,vol. 102, pp. 355- 358 ,(1984) , 10.1016/0375-9601(84)90297-4