作者: Ramón Pericet-Cámara , Andreas Best , Hans-Jürgen Butt , Elmar Bonaccurso
DOI: 10.1021/LA801862M
关键词: Composite material 、 Surface tension 、 Sessile drop technique 、 Young's modulus 、 Capillary length 、 Analytical chemistry 、 Capillary pressure 、 Capillary number 、 Maximum bubble pressure method 、 Drop (liquid) 、 Materials science
摘要: Sessile liquid drops are predicted to deform an elastic surface onto which they are placed because of the combined action of the liquid surface tension at the periphery of the drop and the capillary pressure inside the drop. Here, we show for the first time the in situ experimental confirmation of the effect of capillary pressure on this deformation. We demonstrate micrometer-scale deformations made possible by using a low Young's modulus material as an elastic surface. The experimental profiles of the deformed surfaces fit well the …