A new class of 2 m -point binary non-stationary subdivision schemes

作者: Abdul Ghaffar , Zafar Ullah , Mehwish Bari , Kottakkaran Sooppy Nisar , Maysaa M. Al-Qurashi

DOI: 10.1186/S13662-019-2264-4

关键词: Partial differential equationApplied mathematicsBinary numberMathematicsMonotonic functionTorsion (algebra)CurvatureConvexityOrdinary differential equationSubdivision

摘要: A new class of 2m-point non-stationary subdivision schemes (SSs) is presented, including some their important properties, such as continuity, curvature, torsion monotonicity, and convexity preservation. The multivariate analysis extended to a which are asymptotically equivalent converging stationary or schemes. comparison between the proposed schemes, counterparts existing has been depicted through examples. It observed that SSs give better approximation more effective results.

参考文章(31)
Nira Dyn, David Levin, Stationary and non-stationary binary subdivision schemes Mathematical methods in computer aided geometric design II. pp. 209- 216 ,(1992) , 10.1016/B978-0-12-460510-7.50019-7
Sunita Daniel, P. Shunmugaraj, An interpolating 6-point C2 non-stationary subdivision scheme Journal of Computational and Applied Mathematics. ,vol. 230, pp. 164- 172 ,(2009) , 10.1016/J.CAM.2008.11.006
Shahid S. Siddiqi, Wardat us Salam, Kashif Rehan, A new non-stationary binary 6-point subdivision scheme Applied Mathematics and Computation. ,vol. 268, pp. 1227- 1239 ,(2015) , 10.1016/J.AMC.2015.07.031
M. K. Jena, P. Shunmugaraj, P. C. Das, A non-stationary subdivision scheme for curve interpolation Anziam Journal. ,vol. 44, pp. 216- 235 ,(2008) , 10.21914/ANZIAMJ.V44I0.494
C. Beccari, G. Casciola, L. Romani, An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control Computer Aided Geometric Design. ,vol. 24, pp. 210- 219 ,(2007) , 10.1016/J.CAGD.2007.02.001
C. Beccari, G. Casciola, L. Romani, A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics Computer Aided Geometric Design. ,vol. 24, pp. 1- 9 ,(2007) , 10.1016/J.CAGD.2006.10.003
M.K. Jena, P. Shunmugaraj, P.C. Das, A subdivision algorithm for trigonometric spline curves Computer Aided Geometric Design. ,vol. 19, pp. 71- 88 ,(2002) , 10.1016/S0167-8396(01)00090-5
Shahid S. Siddiqi, Wardat us Salam, Kashif Rehan, Binary 3-point and 4-point non-stationary subdivision schemes using hyperbolic function Applied Mathematics and Computation. ,vol. 258, pp. 120- 129 ,(2015) , 10.1016/J.AMC.2015.01.091
G. Mustafa, F. Khan, A. Ghaffar, The m-point approximating subdivision scheme Lobachevskii Journal of Mathematics. ,vol. 30, pp. 138- 145 ,(2009) , 10.1134/S1995080209020061
Ghulam Mustafa, Abdul Ghaffar, Faheem Khan, The Odd-Point Ternary Approximating Schemes American Journal of Computational Mathematics. ,vol. 01, pp. 111- 118 ,(2011) , 10.4236/AJCM.2011.12011