CONVEXITY, PSEUDO-CONVEXITY AND QUASI-CONVEXITY OF COMPOSITE FUNCTIONS

作者: O.L. MANGASARIAN

DOI: 10.1016/B978-0-12-780850-5.50010-1

关键词: Logarithmically convex functionConvexityMathematical analysisRegular polygonApplied mathematicsComposite functionConvex optimizationComposite numberMathematics

摘要: ABSTRACT A number of recent results which establish the convexity, pseudo-convexity or quasi-convexity certain functions are shown to be special cases fact that under suitable conditions a composite function is convex, pseudo-convex quasi-convex.

参考文章(8)
Hoàng Tuy, Sur les inégalités linéaires Colloquium Mathematicum. ,vol. 13, pp. 107- 123 ,(1964) , 10.4064/CM-13-1-107-123
Anthony V. Fiacco, Garth P. McCormick, The Sequential Unconstrained Minimization Technique for Nonlinear Programing, a Primal-Dual Method Management Science. ,vol. 10, pp. 360- 366 ,(1964) , 10.1287/MNSC.10.2.360
Kenneth J. Arrow, Alain C. Enthoven, QUASI-CONCAVE PROGRAMMING Econometrica. ,vol. 29, pp. 779- ,(1961) , 10.2307/1911819
S. M. Sinha, A Duality Theorem for Nonlinear Programming Management Science. ,vol. 12, pp. 385- 390 ,(1966) , 10.1287/MNSC.12.5.385
O. L. Mangasarian, Pseudo-Convex Functions Journal of the Society for Industrial and Applied Mathematics Series A Control. ,vol. 3, pp. 281- 290 ,(1965) , 10.1137/0303020
C. R. Bector, Programming Problems with Convex Fractional Functions Operations Research. ,vol. 16, pp. 383- 391 ,(1968) , 10.1287/OPRE.16.2.383
Marguerite Frank, Philip Wolfe, An algorithm for quadratic programming Naval Research Logistics Quarterly. ,vol. 3, pp. 95- 110 ,(1956) , 10.1002/NAV.3800030109
Philip Wolfe, A duality theorem for non-linear programming Quarterly of Applied Mathematics. ,vol. 19, pp. 239- 244 ,(1961) , 10.1090/QAM/135625