Action constrained quasi-Newton methods

作者: Jacek Gondzio , Robert Mansel Gower

DOI:

关键词: Iterative methodSequenceLinear systemSet (abstract data type)Matrix (mathematics)Inverse systemMathematicsSupport vector machineAlgorithmQuadratic equation

摘要: At the heart of Newton based optimization methods is a sequence symmetric linear systems. Each consecutive system in this similar to next, so solving them separately waste computational eort. Here we describe automatic preconditioning techniques for iterative such sequences systems by maintaining an estimate inverse matrix. We update matrix with quasi-Newton type formulas on what call action constraint instead secant equation. implement estimated inverses as preconditioners Newton-CG method and prove quadratic termination. Our implementation rst parallel preconditioners, full limited memory variants. Tests logistic Support Vector Machine problems reveal that our very ecient, converging wall clock time before without preconditioning. Further tests set classic test robust. The makes these updates exible enough mesh trust-region active methods, exibility not present methods.

参考文章(37)
Robert B. Schnabel, Quasi-Newton Methods Using Multiple Secant Equations. Defense Technical Information Center. ,(1983) , 10.21236/ADA131444
L. Bergamaschi, A. Martínez, R. Bru, M. Putti, Quasi-Newton preconditioners for the inexact Newton method. ETNA. Electronic Transactions on Numerical Analysis [electronic only]. ,vol. 23, pp. 76- 87 ,(2006)
Jorge J. Moré, Danny C. Sorensen, On the use of directions of negative curvature in a modified newton method Mathematical Programming. ,vol. 16, pp. 1- 20 ,(1979) , 10.1007/BF01582091
José Luis Morales, Jorge Nocedal, Automatic Preconditioning by Limited Memory Quasi-Newton Updating Siam Journal on Optimization. ,vol. 10, pp. 1079- 1096 ,(1999) , 10.1137/S1052623497327854
Jan Mandel, Balancing domain decomposition Communications in Numerical Methods in Engineering. ,vol. 9, pp. 233- 241 ,(1993) , 10.1002/CNM.1640090307
Michael L. Parks, Eric de Sturler, Greg Mackey, Duane D. Johnson, Spandan Maiti, Recycling Krylov Subspaces for Sequences of Linear Systems SIAM Journal on Scientific Computing. ,vol. 28, pp. 1651- 1674 ,(2006) , 10.1137/040607277
C. G. Broyden, A Class of Methods for Solving Nonlinear Simultaneous Equations Mathematics of Computation. ,vol. 19, pp. 577- 593 ,(1965) , 10.1090/S0025-5718-1965-0198670-6
L. Giraud, S. Gratton, E. Martin, Incremental spectral preconditioners for sequences of linear systems Applied Numerical Mathematics. ,vol. 57, pp. 1164- 1180 ,(2007) , 10.1016/J.APNUM.2007.01.005
D. Loghin, D. Ruiz, A. Touhami, Adaptive preconditioners for nonlinear systems of equations Journal of Computational and Applied Mathematics. ,vol. 189, pp. 362- 374 ,(2006) , 10.1016/J.CAM.2005.04.060
Igor S. Aranson, Lorenz Kramer, The world of the complex Ginzburg-Landau equation Reviews of Modern Physics. ,vol. 74, pp. 99- 143 ,(2002) , 10.1103/REVMODPHYS.74.99