Recovery of exact sparse representations in the presence of bounded noise

作者: J.J. Fuchs

DOI: 10.1109/TIT.2005.855614

关键词: Quadratic programmingBasis pursuitTime–frequency analysisBounded functionMatched filterSparse approximationSignal levelMathematicsCombinatoricsSparse matrix

摘要: The purpose of this contribution is to extend some recent results on sparse representations signals in redundant bases developed the noise-free case noisy observations. type question addressed so far as follows: given an (n,m)-matrix A with m>n and a vector b=Axo, i.e., admitting representation xo, find sufficient condition for b have unique sparsest representation. answer bound number nonzero entries xo. We consider b=Axo+e where xo satisfies sparsity conditions requested e additive noise or modeling errors, seek under which can be recovered from sense defined. we obtain relate energy signal level well parameter quadratic program use recover unknown When signal-to-noise ratio large enough, all components are still present when deleted; otherwise, smallest themselves erased quite rational predictable way

参考文章(25)
Scott Shaobing Chen, David L. Donoho, Michael A. Saunders, Atomic Decomposition by Basis Pursuit SIAM Journal on Scientific Computing. ,vol. 20, pp. 33- 61 ,(1998) , 10.1137/S1064827596304010
B. K. Natarajan, Sparse Approximate Solutions to Linear Systems SIAM Journal on Computing. ,vol. 24, pp. 227- 234 ,(1995) , 10.1137/S0097539792240406
Robert Tibshirani, Trevor Hastie, Berwin A. Turlach, Bradley Efron, Jean Michel Loubes, Jean Michel Loubes, Hemant Ishwaran, Robert A. Stine, Keith Knight, Sanford Weisberg, Saharon Rosset, Saharon Rosset, Iain Johnstone, Pascal Massart, Pascal Massart, David Madigan, J. I. Zhu, Greg Ridgeway, Greg Ridgeway, Least angle regression Annals of Statistics. ,vol. 32, pp. 407- 499 ,(2004) , 10.1214/009053604000000067
Anna C. Gilbert, Martin J. Strauss, S. Muthukrishnan, Approximation of functions over redundant dictionaries using coherence symposium on discrete algorithms. pp. 243- 252 ,(2003) , 10.5555/644108.644149
Roger Fletcher, Practical Methods of Optimization ,(1988)
Thomas Strohmer, Robert W Heath, GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION Applied and Computational Harmonic Analysis. ,vol. 14, pp. 257- 275 ,(2003) , 10.1016/S1063-5203(03)00023-X
D.L. Donoho, X. Huo, Uncertainty principles and ideal atomic decomposition IEEE Transactions on Information Theory. ,vol. 47, pp. 2845- 2862 ,(2001) , 10.1109/18.959265
Alston Scott Householder, The Theory of Matrices in Numerical Analysis ,(1964)