On nonparametric spectral estimation

作者: Petre Stoica , Tomas Sundin

DOI: 10.1007/BF01206681

关键词: StatisticsEstimatorSpectral density estimationMathematicsSmoothness (probability theory)Stationary processSpectral densityApplied mathematicsEfficiencyNonparametric statisticsPiecewise

摘要: In this paper the Cramer-Rao bound (CRB) for a general nonparametric spectral estimation problem is derived under local smoothness condition (more exactly, spectrum assumed to be well approximated by piecewise constant function). Furthermore it shown that aforementioned Thomson (TM) and Danieli (DM) methods power density (PSD) can interpreted as approximations of maximum likelihood PSD estimator. Finally statistical efficiency TM DM estimators examined also compared CRB ARMA-based estimation. particular broadband signals, almost achieve performance therefore considered nearly optimal.

参考文章(12)
P. G. Stoica, Randolph L. Moses, Introduction to spectral analysis ,(1997)
Louis L. Scharf, C. T. Mullis, Quadratic Estimators of the Power Spectrum NASA STI/Recon Technical Report N. ,vol. 89, pp. 27964- ,(1989)
B.D. van Veen, L.L. Scharf, Estimation of structured covariance matrices and multiple window spectrum analysis IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 38, pp. 1467- 1472 ,(1990) , 10.1109/29.57585
T.P. Bronez, On the performance advantage of multitaper spectral analysis IEEE Transactions on Signal Processing. ,vol. 40, pp. 2941- 2946 ,(1992) , 10.1109/78.175738
K.S. Riedel, A. Sidorenko, Minimum bias multiple taper spectral estimation IEEE Transactions on Signal Processing. ,vol. 43, pp. 188- 195 ,(1995) , 10.1109/78.365298
D.J. Thomson, Spectrum estimation and harmonic analysis Proceedings of the IEEE. ,vol. 70, pp. 1055- 1096 ,(1982) , 10.1109/PROC.1982.12433
Nonparametric Spectral Estimation Cambridge University Press. pp. 187- 330 ,(1993) , 10.1017/CBO9780511622762.009
M. S. Bartlett, On the Theoretical Specification and Sampling Properties of Autocorrelated Time-Series Supplement to the Journal of the Royal Statistical Society. ,vol. 8, pp. 27- 41 ,(1946) , 10.2307/2983611