Miscorrection probability beyond the minimum distance

作者: Y. Cassuto , J. Bruck

DOI: 10.1109/ISIT.2004.1365561

关键词: CombinatoricsUpper and lower boundsDiscrete mathematicsConcatenated error correction codeMathematicsBlock codeCode wordReed–Muller codeList decodingLinear codeReed–Solomon error correction

摘要: The miscorrection probability of a list decoder is the that will have at least one noncausal codeword in its decoding sphere. Evaluating this important when using list-decoder as conventional since case we require to contain most for errors. A lower bound on main result. key ingredient proof new combinatorial upper list-size general q-ary block code. This tighter than best known large alphabets, and it shown be very close algebraic Reed-Solomon codes. Finally discuss two bounds unify them linear MDS

参考文章(4)
R. J. McEliece, The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes IPNPR. ,vol. 153, pp. 1- 60 ,(2003)
O. Goldreich, R. Rubinfeld, M. Sudan, Learning polynomials with queries: The highly noisy case foundations of computer science. pp. 294- 303 ,(1995) , 10.1109/SFCS.1995.492485
K.-M. Cheung, More on the decoder error probability for Reed-Solomon codes IEEE Transactions on Information Theory. ,vol. 35, pp. 895- 900 ,(1989) , 10.1109/18.32169
Z. Huntoon, A. Michelson, On the computation of the probability of post-decoding error events for block codes (Corresp.) IEEE Transactions on Information Theory. ,vol. 23, pp. 399- 403 ,(1977) , 10.1109/TIT.1977.1055703