SPHERICAL-HARMONIC EXPANSION TECHNIQUES FOR MULTICENTER INTEGRALS OVER STO'S. A RE-EXAMINATION FOR VECTOR PROCESSING COMPUTERS.

作者: H. H. Michels

DOI: 10.1007/978-94-009-7921-5_10

关键词: PhysicsClassical mechanicsBond lengthCharge densityOrder (ring theory)Atomic orbitalSpherical harmonicsCenter (group theory)Vector processorSimulationPoint (geometry)

摘要: In multicenter integral calculations, it is useful to express an atomic orbital as a spherical-harmonic expansion about point displaced from the orbital’s center. Through judicious choice of these points, possible calculate general electron-repulsion for orbitals at most by distances order bond lengths.

参考文章(22)
R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions Journal of Chemical Physics. ,vol. 72, pp. 650- 654 ,(1980) , 10.1063/1.438955
Frank E. Harris, Gaussian Wave Functions for Polyatomic Molecules Reviews of Modern Physics. ,vol. 35, pp. 558- 568 ,(1963) , 10.1103/REVMODPHYS.35.558
Harris J. Silverstone, Kenneth G. Kay, Convergence Properties of Certain Formulas for Multicenter Electron Repulsion Integrals Obtained from the Bipolar Expansion of r12−1 The Journal of Chemical Physics. ,vol. 50, pp. 5045- 5047 ,(1969) , 10.1063/1.1671015
Hendrik J. Monkhorst, Frank E. Harris, Accurate calculation of Fourier transform of two-center Slater orbital products† International Journal of Quantum Chemistry. ,vol. 6, pp. 601- 607 ,(1972) , 10.1002/QUA.560060402
J. C. Browne, R. D. Poshusta, Quantum‐Mechanical Integrals over Gaussian Atomic Orbitals Journal of Chemical Physics. ,vol. 36, pp. 1933- 1937 ,(1962) , 10.1063/1.1701293
Morris Krauss, Hartree—Fock Approximation of CH4and NH4+ The Journal of Chemical Physics. ,vol. 38, pp. 564- 565 ,(1963) , 10.1063/1.1733695
The evaluation of integrals occurring in the theory of molecular structure. Parts I & II Philosophical Transactions of the Royal Society A. ,vol. 243, pp. 221- 249 ,(1951) , 10.1098/RSTA.1951.0003
Albert Sprague Coolidge, A Quantum Mechanics Treatment of the Water Molecule Physical Review. ,vol. 42, pp. 189- 209 ,(1932) , 10.1103/PHYSREV.42.189