Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system

作者: Li-Qun Jia , Mei-Ling Zhang , Xiao-Xiao Wang , Yue-Lin Han

DOI: 10.1088/1674-1056/21/7/070204

关键词: Mathematical analysisNonholonomic systemConserved quantityConstraint (information theory)MathematicsClassical mechanics

摘要: A weakly nonholonomic system is a whose constraint equations contain small parameter. The form invariance and the approximate conserved quantity of Appell for are studied. established, definition criterion given. structural equation deduced from obtained. Finally, an example given to illustrate application results.

参考文章(31)
Cai Jian-Le, Mei Feng-Xiang, Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation Acta Physica Sinica. ,vol. 57, pp. 5369- 5373 ,(2008) , 10.7498/APS.57.5369
Zhang Yao-Yu, Jia Li-Qun, Yang Xin-Fang, Xie Yin-Li, Cui Jin-Chao, A new type of conserved quantity induced by Mei symmetry of Appell equation Acta Physica Sinica. ,vol. 59, pp. 7552- 7555 ,(2010) , 10.7498/APS.59.7552
梅凤翔, Canonical Transform ation for Weak Nonholonomic Systems Chinese Science Bulletin. ,vol. 38, pp. 281- 285 ,(1993) , 10.1360/SB1993-38-4-281
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian, Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems Acta Physica Sinica. ,vol. 59, pp. 5209- 5212 ,(2010) , 10.7498/APS.59.5209
N. A. Fufaev, I︠u︡. I. Neĭmark, J. R. Barbour, Dynamics of Nonholonomic Systems ,(1972)
Chen Xiang-Wei, Liu Cui-Mei, Li Yan-Min, Lie symmetries, perturbation to symmetries and adiabatic invariants of Poincaré equations Chinese Physics. ,vol. 15, pp. 470- 474 ,(2006) , 10.1088/1009-1963/15/3/002
S. Ostrovskaya, J. Angeles, Nonholonomic Systems Revisited Within the Framework of Analytical Mechanics Applied Mechanics Reviews. ,vol. 51, pp. 415- 433 ,(1998) , 10.1115/1.3099013
F. X. Mei, H. B. Wu, Y. F. Zhang, Symmetries and conserved quantities of constrained mechanical systems International Journal of Dynamics and Control. ,vol. 2, pp. 285- 303 ,(2014) , 10.1007/S40435-013-0043-8
Cai Jian-Le, Luo Shao-Kai, Mei Feng-Xiang, Conformal invariance and conserved quantity of Hamilton systems Chinese Physics B. ,vol. 17, pp. 3170- 3174 ,(2008) , 10.1088/1674-1056/17/9/002