Existence and stability of periodic solutions of delayed cellular neural networks

作者: Yongkun Li , Lifei Zhu , Ping Liu

DOI: 10.1016/J.NONRWA.2005.02.004

关键词: Discrete mathematicsDegree (graph theory)Liapunov functionContinuation theoremMathematics

摘要: Abstract We use the continuation theorem of coincidence degree theory and Liapunov function to study existence stability positive periodic solutions for cellular neural networks (CNNs) with distributed delays d x i t = - b ( ) + ∑ j 1 n a ij f ζ , I 2 … state-dependent ∫ 0 ∞ k u .

参考文章(7)
Jean L. Mawhin, Robert E. Gaines, Coincidence degree and nonlinear differential equations ,(1977)
Leon O. Chua, Cnn: A Paradigm for Complexity ,(1998)
Tamás Roska, Giovanni Pazienza, Cellular Neural Networks Scholarpedia. ,vol. 4, pp. 1519- ,(1994) , 10.4249/SCHOLARPEDIA.1519
L.O. Chua, L. Yang, Cellular neural networks: applications IEEE Transactions on Circuits and Systems. ,vol. 35, pp. 1273- 1290 ,(1988) , 10.1109/31.7601
Yongkun Li, Yang Kuang, Periodic Solutions of Periodic Delay Lotka–Volterra Equations and Systems☆ Journal of Mathematical Analysis and Applications. ,vol. 255, pp. 260- 280 ,(2001) , 10.1006/JMAA.2000.7248