Conjugacy in Garside groups III: Periodic braids

作者: Joan S. Birman , Volker Gebhardt , Juan González-Meneses

DOI: 10.1016/J.JALGEBRA.2007.02.002

关键词: Center (group theory)Braid theoryBraid groupConjugacy problemElement (category theory)BraidPolynomialCombinatoricsConjugacy classMathematics

摘要: Abstract An element in Artin's braid group B n is said to be periodic if some power of it lies the center . In this paper we prove that all previously known algorithms for solving conjugacy search problem are exponential index special case braids. We overcome difficulty by putting work several isomorphisms between Garside structures and other groups. This allows us obtain a polynomial solution original spirit algorithms. third series papers same authors about They have unified goal: development algorithm decision problems , which generalizes groups whenever possible. It our hope methods introduced here will allow generalization results Artin–Tits spherical type.

参考文章(31)
Jian-yi Shi, The Enumeration of Coxeter Elements Journal of Algebraic Combinatorics. ,vol. 6, pp. 161- 171 ,(1997) , 10.1023/A:1008695121783
Samuel Eilenberg, Sur les transformations périodiques de la surface de sphère Fundamenta Mathematicae. ,vol. 22, pp. 28- 41 ,(1934) , 10.4064/FM-22-1-28-41
S. V. Levy, M. S. Paterson, J. W. Cannon, D. F. Holt, W. P. Thurston, David B. A. Epstein, Word processing in groups ,(1992)
Nicolas Bourbaki, Lie groups and Lie algebras ,(1998)
F. Digne, J. Michel, Endomorphisms of Deligne-Lusztig varieties Nagoya Mathematical Journal. ,vol. 183, pp. 35- 103 ,(2006) , 10.1017/S0027763000009260
Eon-Kyung Lee, Sang Jin Lee, Conjugacy classes of periodic braids arXiv: Geometric Topology. ,(2007)
Egbert Brieskorn, Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen Inventiones Mathematicae. ,vol. 17, pp. 245- 271 ,(1972) , 10.1007/BF01406235
B. von Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche Mathematische Annalen. ,vol. 80, pp. 36- 38 ,(1919) , 10.1007/BF01463232
Victor Reiner, Non-crossing partitions for classical reflection groups Discrete Mathematics. ,vol. 177, pp. 195- 222 ,(1997) , 10.1016/S0012-365X(96)00365-2