作者: Katrin Fässler , Zoltán M. Balogh , Hernando Sobrino , Hernando Sobrino
DOI: 10.1007/S10711-017-0282-5
关键词: Mathematics 、 Embedding 、 Heisenberg group 、 Euclidean space 、 Differential geometry 、 Homomorphism 、 Space (mathematics) 、 Pure mathematics 、 Projective geometry 、 Hyperbolic geometry
摘要: We study isometric embeddings of a Euclidean space or Heisenberg group into higher dimensional group, where both the source and target are equipped with an arbitrary left-invariant homogeneous distance that is not necessarily sub-Riemannian. show if all infinite geodesics in straight lines, then such embedding must be homomorphism. discuss necessary certain sufficient conditions for to have this `geodesic linearity property', we provide various examples.