Isometric embeddings into Heisenberg groups

作者: Katrin Fässler , Zoltán M. Balogh , Hernando Sobrino , Hernando Sobrino

DOI: 10.1007/S10711-017-0282-5

关键词: MathematicsEmbeddingHeisenberg groupEuclidean spaceDifferential geometryHomomorphismSpace (mathematics)Pure mathematicsProjective geometryHyperbolic geometry

摘要: We study isometric embeddings of a Euclidean space or Heisenberg group into higher dimensional group, where both the source and target are equipped with an arbitrary left-invariant homogeneous distance that is not necessarily sub-Riemannian. show if all infinite geodesics in straight lines, then such embedding must be homomorphism. discuss necessary certain sufficient conditions for to have this `geodesic linearity property', we provide various examples.

参考文章(28)
Luca Capogna, Donatella Danielli, Scott D. Pauls, Jeremy T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem ,(2007)
Waldemar Hebisch, Adam Sikora, A smooth subadditive homogeneous norm on a homogeneous group Studia Mathematica. ,vol. 96, pp. 231- 236 ,(1990) , 10.4064/SM-96-3-231-236
Roe Goodman, Filtrations and asymptotic automorphisms on nilpotent Lie groups Journal of Differential Geometry. ,vol. 12, pp. 183- 196 ,(1977) , 10.4310/JDG/1214433980
Ursula Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics Journal of Differential Geometry. ,vol. 32, pp. 819- 850 ,(1990) , 10.4310/JDG/1214445536
Dmitri Burago, Yuri Burago, Sergei Ivanov, A Course in Metric Geometry ,(2001)
Iwao Kishimoto, Geodesics and isometries of Carnot groups Journal of Mathematics of Kyoto University. ,vol. 43, pp. 509- 522 ,(2003) , 10.1215/KJM/1250283693
G. B. Folland, A fundamental solution for a subelliptic operator Bulletin of the American Mathematical Society. ,vol. 79, pp. 373- 377 ,(1973) , 10.1090/S0002-9904-1973-13171-4
Luigi Ambrosio, Bernd Kirchheim, Rectifiable sets in metric and Banach spaces Mathematische Annalen. ,vol. 318, pp. 527- 555 ,(2000) , 10.1007/S002080000122
Tom Klein, Andrew Nicas, The Horofunction boundary of the Heisenberg Group: The Carnot-Carathéodory metric Conformal Geometry and Dynamics of The American Mathematical Society. ,vol. 14, pp. 269- 295 ,(2010) , 10.1090/S1088-4173-2010-00217-1
S. V. Ivanov, Volumes and areas of Lipschitz metrics St Petersburg Mathematical Journal. ,vol. 20, pp. 381- 405 ,(2009) , 10.1090/S1061-0022-09-01053-X