Rank-finiteness for modular categories

作者: Paul Bruillard , Siu-Hung Ng , Eric C. Rowell , Zhenghan Wang

DOI: 10.1090/JAMS/842

关键词: Modular designConjectureGroup theoryDiscrete mathematicsCauchy's integral theoremEquivalence (formal languages)Dedekind domainMathematics

摘要: We prove a rank-finiteness conjecture for modular categories: up to equivalence, there are only finitely many categories of any fixed rank. Our technical advance is generalization the Cauchy theorem in group theory context spherical fusion categories. For category $\mathcal{C}$ with $N=ord(T)$, order $T$-matrix, says that set primes dividing global quantum dimension $D^2$ Dedekind domain $\mathbb{Z}[e^{\frac{2\pi i}{N}}]$ identical $N$.

参考文章(59)
John Conway, A. Jones, Trigonometric diophantine equations (On vanishing sums of roots of unity) Acta Arithmetica. ,vol. 30, pp. 229- 240 ,(1976) , 10.4064/AA-30-3-229-240
Tanzô Takenouchi, On an Indeterminate Equation Proceedings of the Physico-Mathematical Society of Japan. 3rd Series. ,vol. 3, pp. 78- 92 ,(1921) , 10.11429/PPMSJ1919.3.6_78
Tobias Hagge, Zhenghan Wang, Orit Davidovich, On Arithmetic Modular Categories arXiv: Quantum Algebra. ,(2013)
VLADIMIR G. TURAEV, Modular categories and 3-manifold invariants International Journal of Modern Physics B. ,vol. 06, pp. 1807- 1824 ,(1992) , 10.1142/S0217979292000876
F. J. Burnell, Xie Chen, Lukasz Fidkowski, Ashvin Vishwanath, Exactly soluble model of a three-dimensional symmetry-protected topological phase of bosons with surface topological order Physical Review B. ,vol. 90, pp. 245122- ,(2014) , 10.1103/PHYSREVB.90.245122
Zhenghan Wang, Quantum Computing: a Quantum Group Approach arXiv: Quantum Algebra. ,(2013)
Bojko Bakalov, Alexander Kirillov, Lectures on tensor categories and modular functors American Mathematical Society. ,vol. 21, ,(2000) , 10.1090/ULECT/021
Jan-Hendrik Evertse, On sums of $S$-units and linear recurrences Compositio Mathematica. ,vol. 53, pp. 225- 244 ,(1984)
Zhenghan Wang, Xiao-Gang Wen, Yi-Zhuang You, Fangzhou Liu, Modular transformations and topological orders in two dimensions arXiv: Strongly Correlated Electrons. ,(2013)
Chongying Dong, Siu-Hung Ng, Xingjun Lin, Congruence Property In Conformal Field Theory arXiv: Quantum Algebra. ,(2012) , 10.2140/ANT.2015.9.2121