Multiplicity-free primitive ideals associated with rigid nilpotent orbits

作者: ALEXANDER PREMET

DOI: 10.1007/S00031-014-9266-9

关键词: Nilpotent orbitDiscrete mathematicsCombinatoricsFixed pointMultiplicity (mathematics)Algebraic groupPrimitive idealLie algebraMathematicsNilpotent

摘要: Let G be a simple algebraic group defined over ℂ. e nilpotent element in \( \mathfrak{g} \) = Lie(G) and denote by U (\( \), e) the finite W-algebra associated with pair e). It is known that component Γ of centraliser acts on set ℰ all one-dimensional representations In this paper we prove fixed point ℰΓ non-empty. As corollary, W-algebras admit representations. case rigid elements exceptional Lie algebras find irreducible highest weight \)-modules whose annihilators \)) come from via Skryabin’s equivalence. consequence, show for any orbit \mathcal{O} there exists multiplicity-free (and hence completely prime) primitive ideal variety equals Zariski closure \).

参考文章(36)
Jens Carsten Jantzen, Karl-Hermann Neeb, Jens Carsten Jantzen, Nilpotent Orbits in Representation Theory Lie Theory. pp. 1- 211 ,(2004) , 10.1007/978-0-8176-8192-0_1
A. Joseph, Kostant's problem and goldie rank Lecture Notes in Mathematics. pp. 249- 266 ,(1981) , 10.1007/BFB0090412
A. Premet, Primitive ideals, non-restricted representations and finite W-algebras Moscow Mathematical Journal. ,vol. 7, pp. 743- 762 ,(2007) , 10.17323/1609-4514-2007-7-4-743-762
Wee Gan, Victor Ginzburg, Quantization of Slodowy slices International Mathematics Research Notices. ,vol. 2002, pp. 243- 255 ,(2002) , 10.1155/S107379280210609X
C Mœglin, Idéaux complètement premiers de l'algèbre enveloppante de gln(C) Journal of Algebra. ,vol. 106, pp. 287- 366 ,(1987) , 10.1016/0021-8693(87)90001-9
J. E. Humphreys, MODULAR REPRESENTATIONS OF SIMPLE LIE ALGEBRAS Bulletin of the American Mathematical Society. ,vol. 35, pp. 105- 122 ,(1998) , 10.1090/S0273-0979-98-00749-6