A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy

作者: Eric A. Carlen , Elliott H. Lieb

DOI: 10.1007/978-3-642-55925-9_19

关键词: Strong Subadditivity of Quantum EntropyMinkowski spaceCombinatoricsType (model theory)ConjecturePartial traceMathematicsTrace (linear algebra)Regular polygonMathematical analysis

摘要: … for 0 < p ::; 1 and convex for p = 2. We then derive from this a Minkowski type inequality for operators on a tensor … For p > 2, p is neither convex nor concave. We conjecture that p is …

参考文章(8)
Jan Philip Solovej, Elliott H. Lieb, Heinz Siedentop, Stability and Instability of Relativistic Electrons in Classical Electromagnetic Fields Journal of Statistical Physics. ,vol. 89, pp. 37- 59 ,(1997) , 10.1007/BF02770753
Elliott H. Lieb, Some Convexity and Subadditivity Properties of Entropy Bulletin of the American Mathematical Society. ,vol. 81, pp. 1- 13 ,(1975) , 10.1007/978-3-642-55925-9_7
H. Epstein, Remarks on two theorems of E. Lieb Communications in Mathematical Physics. ,vol. 31, pp. 317- 325 ,(1973) , 10.1007/BF01646492
Elliott H Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture Advances in Mathematics. ,vol. 11, pp. 267- 288 ,(1973) , 10.1016/0001-8708(73)90011-X
Elliott H. Lieb, Mary Beth Ruskai, Proof of the strong subadditivity of quantum‐mechanical entropy Journal of Mathematical Physics. ,vol. 14, pp. 1938- 1941 ,(1973) , 10.1063/1.1666274
Tsuyoshi Ando, Fumio Hiai, Hölder type inequalities for matrices Mathematical Inequalities & Applications. pp. 1- 30 ,(1998) , 10.7153/MIA-01-01
Elliott H. Lieb, Heinz Siedentop, Jan Philip Solovej, Stability and Instability of Relativistic Electrons in Classical Electro magnetic Fields arXiv: Statistical Mechanics. ,(1996) , 10.1007/BF02770753
Elliott H. Lieb, Some convexity and subadditivity properties of entropy Bulletin of the American Mathematical Society. ,vol. 81, pp. 1- 14 ,(1975) , 10.1090/S0002-9904-1975-13621-4