Syntheses, crystal structures and biological relevance of glycolato and S-lactato molybdates

作者: Zhao-Hui Zhou , Shu-Ya Hou , Ze-Xing Cao , Hui-Lin Wan , Seik-Weng Ng

DOI: 10.1016/J.JINORGBIO.2004.02.024

关键词: Medicinal chemistryMolybdateDenticityOxidation stateGlycolic acidChelationMoietyChemistryCrystal structureStereochemistryMolybdenumInorganic chemistryBiochemistry

摘要: Glycolato and S -lactato complexes containing the dioxomolybdenum(VI) moiety have been synthesized for studies on role of α-hydroxycarboxylato anion in iron molybdenum cofactor nitrogenase. The ligands these complexes, vis K 2 [MoO (glyc) ] · H O (H glyc=glycolic acid, C H 4 3 ) ( 1 {Na -lact) ]}  · 13H lact=lactic 6 chelate through their α-alkoxyl α-carboxyl oxygen atoms. In contrast, octanuclear [(MoO 8 (Hglyc) ] · 10H formed by reduction glycolato complex ), features three different ligand binding modes: (i) non-bridging bridging bidentate coordination groups, (ii) using group, leaving group free. skeleton shows strong metal–metal interactions. modes mimic that homocitrate to (FeMo-co) groups bond Mo is less susceptible oxidation state compared with Mo-α-alkoxyl bond. This supported dinuclear free molybdate(V) ).

参考文章(55)
Molybdenum Enzymes, Cofactors, and Model Systems. Journal of Chemical Education. ,vol. 62, ,(1993) , 10.1021/BK-1993-0535
T R Hoover, V K Shah, G P Roberts, P W Ludden, nifV-dependent, low-molecular-weight factor required for in vitro synthesis of iron-molybdenum cofactor of nitrogenase. Journal of Bacteriology. ,vol. 167, pp. 999- 1003 ,(1986) , 10.1128/JB.167.3.999-1003.1986
F.Albert Cotton, Thomas S. Barnard, Lee M. Daniels, Carlos A. Murillo, First water soluble Mo24+ compounds spanned by four α-hydroxycarboxylate anions Inorganic Chemistry Communications. ,vol. 5, pp. 527- 532 ,(2002) , 10.1016/S1387-7003(02)00466-5
V.K. Shah, J.R. Allen, N.J. Spangler, P.W. Ludden, In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Purification and characterization of NifB cofactor, the product of NIFB protein. Journal of Biological Chemistry. ,vol. 269, pp. 1154- 1158 ,(1994) , 10.1016/S0021-9258(17)42235-6
G. J. Leigh, So That's How It's Done--Maybe Science. ,vol. 301, pp. 55- 56 ,(2003) , 10.1126/SCIENCE.1086678
Suzanne M Mayer, David M Lawson, Carol A Gormal, S.Mark Roe, Barry E Smith, New insights into structure-function relationships in nitrogenase: A 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. Journal of Molecular Biology. ,vol. 292, pp. 871- 891 ,(1999) , 10.1006/JMBI.1999.3107
Zexing Cao, Zhaohui Zhou, Huilin Wan, Qianer Zhang, Walter Thiel, Density functional calculations on the binding of dinitrogen to the FeFe cofactor in Fe-only nitrogenase: FeFeCo(μ6-N2 as intermediate in nitrogen fixation Inorganic Chemistry. ,vol. 42, pp. 6986- 6988 ,(2003) , 10.1021/IC034714X
John W. Peters, Michael H. B. Stowell, S. Michael Soltis, Michael G. Finnegan, Michael K. Johnson, Douglas C. Rees, Redox-Dependent Structural Changes in the Nitrogenase P-Cluster Biochemistry. ,vol. 36, pp. 1181- 1187 ,(1997) , 10.1021/BI9626665
Timothy R. Hoover, Juan Imperial, Paul W. Ludden, Vinod K. Shah, Homocitrate is a component of the iron-molybdenum cofactor of nitrogenase. Biochemistry. ,vol. 28, pp. 2768- 2771 ,(1989) , 10.1021/BI00433A004