Cytochrome c: the effect of temperature and pressure from molecular dynamics simulations

作者: M Prabhakaran , Sachin H Gursahani , Chandra S Verma , R Garduno-Juarez , V Renugopalakrishnan

DOI: 10.1016/J.JPCS.2003.10.079

关键词: Hydrogen bondElectron transferMoleculeCrystallographyChemical physicsCovalent bondSolvent effectsElectron transport chainCytochrome cMolecular dynamicsChemistryGeneral Materials ScienceGeneral chemistryCondensed matter physics

摘要: Cytochrome c has been extensively investigated due to its role in the process of electron transfer mitochondrial system. The effect temperature and pressure on horse cytochrome was using normal mode analysis Molecular Dynamics simulations. conformational space molecule anharmonic component oscillations were obtained further by molecular dynamics simulations for 1.5 ns solvent environment. simulated root means square fluctuations, radii gyration, hydrogen bond arrangements atomic packing densities reveal that protein remains compact duration simulation; high induced partial unfolding at surface regions observed. covalent bonding arrangement Fe (heme) during simulation. These results provide insight into stability transport under various pressures temperatures could be mutated enhance properties protein.

参考文章(24)
Peter G. Wolynes, J. Andrew Mccammon, Stephen C. Harvey, Dynamics of proteins and nucleic acids ,(1987)
David A. Case, Normal mode analysis of protein dynamics Current Opinion in Structural Biology. ,vol. 4, pp. 285- 290 ,(1994) , 10.1016/S0959-440X(94)90321-2
Xuehe Zheng, Dmitry M Medvedev, Jessica Swanson, Alexei A Stuchebrukhov, Computer simulation of water in cytochrome c oxidase Biochimica et Biophysica Acta. ,vol. 1557, pp. 99- 107 ,(2003) , 10.1016/S0005-2728(03)00002-1
Ilya A Balabin, José N Onuchic, Dynamically controlled protein tunneling paths in photosynthetic reaction centers. Science. ,vol. 290, pp. 114- 117 ,(2000) , 10.1126/SCIENCE.290.5489.114
H.J.C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation Computer Physics Communications. ,vol. 91, pp. 43- 56 ,(1995) , 10.1016/0010-4655(95)00042-E
Roger Fourme, Isabella Ascone, Richard Kahn, Mohamed Mezouar, Pierre Bouvier, Eric Girard, Tianwei Lin, John E. Johnson, Opening the High-Pressure Domain beyond 2 kbar to Protein and Virus Crystallography—Technical Advance Structure. ,vol. 10, pp. 1409- 1414 ,(2002) , 10.1016/S0969-2126(02)00850-X
D. M. F. Van Aalten, B. L. De Groot, J. B. C. Findlay, H. J. C. Berendsen, A. Amadei, A Comparison of Techniques for Calculating Protein Essential Dynamics Journal of Computational Chemistry. ,vol. 18, pp. 169- 181 ,(1997) , 10.1002/(SICI)1096-987X(19970130)18:2<169::AID-JCC3>3.0.CO;2-T
Haripada Maity, Woon Ki Lim, Jon N Rumbley, S Walter Englander, Protein hydrogen exchange mechanism: Local fluctuations Protein Science. ,vol. 12, pp. 153- 160 ,(2003) , 10.1110/PS.0225803
Radovan Dvorsky, Josef Sevcik, Leo S. D. Caves, Roderick E. Hubbard, Chandra S. Verma, Temperature Effects on Protein Motions: A Molecular Dynamics Study of RNase-Sa Journal of Physical Chemistry B. ,vol. 104, pp. 10387- 10397 ,(2000) , 10.1021/JP001933K
Dmitri P. Kharakoz, Protein Compressibility, Dynamics, and Pressure Biophysical Journal. ,vol. 79, pp. 511- 525 ,(2000) , 10.1016/S0006-3495(00)76313-2