Phenotype-driven strategies for exome prioritization of human Mendelian disease genes

作者: Damian Smedley , Peter N. Robinson

DOI: 10.1186/S13073-015-0199-2

关键词: Human geneticsSystems biologyGeneGeneticsModel organismCandidate geneExomePhenotypeExome sequencingBiology

摘要: Whole exome sequencing has altered the way in which rare diseases are diagnosed and disease genes identified. Hundreds of novel disease-associated have been characterized by whole past five years, yet identification disease-causing mutations is often challenging because large number variants that being revealed. Gene prioritization aims to rank most probable candidate towards top a list potentially pathogenic variants. A promising new approach involves computational comparison phenotypic abnormalities individual investigated with those previously associated human or genetically modified model organisms. In this review, we compare contrast strengths weaknesses current phenotype-driven algorithms, including Phevor, Phen-Gen, eXtasy two algorithms developed our groups called PhenIX Exomiser. Computational phenotype analysis can substantially improve performance pipelines.

参考文章(65)
Gene Ontology Consortium, None, Gene Ontology Consortium: going forward Nucleic Acids Research. ,vol. 43, ,(2015) , 10.1093/NAR/GKU1179
Care4Rare Canada Dyment DA, Tetreault M, Beaulieu CL, Hartley T, Ferreira P, Chardon JW, Marcadier J, Sawyer SL, Mosca SJ, Innes AM, Parboosingh JS, Bulman DE, Schwartzentruber J, Majewski J, Tarnopolsky M, Boycott KM, FORGE Canada Consortium (including Scherer SW), Whole-exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: a retrospective study. Clinical Genetics. ,vol. 88, pp. 34- 40 ,(2015) , 10.1111/CGE.12464
Christian Gilissen, Alexander Hoischen, Han G Brunner, Joris A Veltman, Disease gene identification strategies for exome sequencing European Journal of Human Genetics. ,vol. 20, pp. 490- 497 ,(2012) , 10.1038/EJHG.2011.258
Jana Marie Schwarz, David N Cooper, Markus Schuelke, Dominik Seelow, MutationTaster2: mutation prediction for the deep-sequencing age Nature Methods. ,vol. 11, pp. 361- 362 ,(2014) , 10.1038/NMETH.2890
Michael N Weedon, , Inês Cebola, Ann-Marie Patch, Sarah E Flanagan, Elisa De Franco, Richard Caswell, Santiago A Rodríguez-Seguí, Charles Shaw-Smith, Candy H-H Cho, Hana Lango Allen, Jayne A L Houghton, Christian L Roth, Rongrong Chen, Khalid Hussain, Phil Marsh, Ludovic Vallier, Anna Murray, Sian Ellard, Jorge Ferrer, Andrew T Hattersley, Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis Nature Genetics. ,vol. 46, pp. 61- 64 ,(2014) , 10.1038/NG.2826
Kym M Boycott, Megan R Vanstone, Dennis E Bulman, Alex E MacKenzie, None, Rare-disease genetics in the era of next-generation sequencing: discovery to translation Nature Reviews Genetics. ,vol. 14, pp. 681- 691 ,(2013) , 10.1038/NRG3555
Prateek Kumar, Steven Henikoff, Pauline C Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols. ,vol. 4, pp. 1073- 1081 ,(2009) , 10.1038/NPROT.2009.86
Michael J. Bamshad, Jay A. Shendure, David Valle, Ada Hamosh, James R. Lupski, Richard A. Gibbs, Eric Boerwinkle, Richard P. Lifton, Mark Gerstein, Murat Gunel, Shrikant Mane, Deborah A. Nickerson, , The Centers for Mendelian Genomics: a new large-scale initiative to identify the genes underlying rare Mendelian conditions. American Journal of Medical Genetics Part A. ,vol. 158, pp. 1523- 1525 ,(2012) , 10.1002/AJMG.A.35470
Wendy A van Zelst-Stams, Hans Scheffer, Joris A Veltman, Clinical exome sequencing in daily practice: 1,000 patients and beyond Genome Medicine. ,vol. 6, pp. 2- 2 ,(2014) , 10.1186/GM521
K. Wang, M. Li, H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data Nucleic Acids Research. ,vol. 38, ,(2010) , 10.1093/NAR/GKQ603