Information capacity of a quantum observable

作者: A. S. Holevo

DOI: 10.1134/S0032946012010012

关键词: Discrete mathematicsObservableSimple (abstract algebra)Dual (category theory)Communication channelTheoretical physicsDuality (optimization)Quantum informationMathematicsQuantum

摘要: In this paper we consider the classical capacities of quantum-classical channels corresponding to measurement observables. Special attention is paid case continuous We give formulas for unassisted and entanglement-assisted C ea some explicitly solvable cases, which simple examples entanglement-breaking with < ea. also elaborate on ensemble-observable duality show that channel related ?-quantity dual ensemble in same way as accessible information. This provides both information quantum ensembles our examples.

参考文章(18)
Alexander S. Holevo, STATISTICAL STRUCTURE OF QUANTUM THEORY Springer Berlin Heidelberg. ,(2001) , 10.1007/3-540-44998-1
A. S. HOLEVO, ADDITIVITY CONJECTURE AND COVARIANT CHANNELS International Journal of Quantum Information. ,vol. 03, pp. 41- 47 ,(2005) , 10.1142/S0219749905000530
Michele Dall’Arno, Giacomo Mauro D’Ariano, Massimiliano F. Sacchi, Informational power of quantum measurements Physical Review A. ,vol. 83, pp. 062304- ,(2011) , 10.1103/PHYSREVA.83.062304
Michael J. W. Hall, QUANTUM INFORMATION AND CORRELATION BOUNDS Physical Review A. ,vol. 55, pp. 100- 113 ,(1997) , 10.1103/PHYSREVA.55.100
Ramon Muñoz-Tapia, Ognyan Oreshkov, Ognyan Oreshkov, John Calsamiglia, Emili Bagan, Emili Bagan, Emili Bagan, Optimal signal states for quantum detectors New Journal of Physics. ,vol. 13, pp. 073032- ,(2011) , 10.1088/1367-2630/13/7/073032
Masanao Ozawa, Quantum measuring processes of continuous observables Journal of Mathematical Physics. ,vol. 25, pp. 79- 87 ,(1984) , 10.1063/1.526000
A. S. Holevo, Entanglement-breaking channels in infinite dimensions Problems of Information Transmission. ,vol. 44, pp. 171- 184 ,(2008) , 10.1134/S0032946008030010
Elliott H. Lieb, Proof of an entropy conjecture of Wehrl Communications in Mathematical Physics. ,vol. 62, pp. 35- 41 ,(1978) , 10.1007/BF01940328
Charles H. Bennett, Peter W. Shor, John A. Smolin, Ashish V. Thapliyal, Entanglement-Assisted Classical Capacity of Noisy Quantum Channels Physical Review Letters. ,vol. 83, pp. 3081- 3084 ,(1999) , 10.1103/PHYSREVLETT.83.3081
Alberto Barchielli, Giancarlo Lupieri, Instruments and mutual entropies in quantum information Quantum Probability. ,vol. 73, pp. 65- 80 ,(2006) , 10.4064/BC73-0-4