Localized-muffin-tin-orbital basis for atomic-cluster calculations within the local-density formalism

作者: J. Harris , G. S. Painter

DOI: 10.1103/PHYSREVB.22.2614

关键词: Gaussian integralFormalism (philosophy of mathematics)PhysicsLinear combinationTinAtomic clusterAtomic orbitalBasis setSPHERESQuantum mechanics

摘要: A new approach for solving the Hohenberg-Kohn-Sham density-functional equations atomic clusters of moderate size and arbitrary symmetry is described. basis set introduced in spirit LCMTO (linear combination muffin-tin orbitals) method Andersen with a (phi,phi-dot) form inside each sphere. However, advantageous features conventional linear-combination-of-atomic-orbitals are brought by introducing only atomiclike orbital tails region outside spheres. The ''common-kappa'' approximation cellular partitioning abandoned; this it becomes necessary to carry out some three-dimensional integrations. Techniques which allow all integrals contributing secular matrix total energy be evaluated either semianalytically or Gaussian integration smooth functions. Preliminary results H/sub 2/ O/sub demonstrate practicality scheme.

参考文章(9)
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas Physical Review. ,vol. 136, pp. 864- 871 ,(1964) , 10.1103/PHYSREV.136.B864
W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects Physical Review. ,vol. 140, pp. 1133- 1142 ,(1965) , 10.1103/PHYSREV.140.A1133
O.K. Andersen, R.G. Woolley, Muffin-tin orbitals and molecular calculations: General formalism Molecular Physics. ,vol. 26, pp. 905- 927 ,(1973) , 10.1080/00268977300102171
O. Gunnarsson, J. Harris, R. O. Jones, Muffin-tin orbitals and the total energy of atomic clusters Physical Review B. ,vol. 15, pp. 3027- 3038 ,(1977) , 10.1103/PHYSREVB.15.3027
O. Gunnarsson, Density functional theory and molecular bonding. I. First-row diatomic molecules The Journal of Chemical Physics. ,vol. 67, pp. 3970- 3979 ,(1999) , 10.1063/1.435414
J. Harris, R. O. Jones, Density functional theory and molecular bonding. II. Alkali dimers The Journal of Chemical Physics. ,vol. 68, pp. 1190- 1193 ,(1978) , 10.1063/1.435809
W. Heijser, A.Th. Van Kessel, E.J. Baerends, Self-consistent molecular hartree—fock—slater calculations. IV. On electron densities, spectroscopic constants and proton affinities of some small molecules principles and practice of constraint programming. ,vol. 16, pp. 371- 379 ,(1976) , 10.1016/0301-0104(76)80083-3
B. I. Dunlap, J. W. D. Connolly, J. R. Sabin, On first‐row diatomic molecules and local density models Journal of Chemical Physics. ,vol. 71, pp. 4993- 4999 ,(1979) , 10.1063/1.438313
O. Gunnarsson, P. Johansson, The spin-density-functional formalism for quantum mechanical calculations: Test on diatomic molecules with an efficient numerical method International Journal of Quantum Chemistry. ,vol. 10, pp. 307- 323 ,(1976) , 10.1002/QUA.560100210