A note on the definition of deformed exponential and logarithm functions

作者: Thomas Oikonomou , G Baris Bagci , None

DOI: 10.1063/1.3227657

关键词: Real numberInverseRényi entropyExponential functionMathematicsPositive real numbersBijectionMathematical analysisLogarithmEntropy (information theory)

摘要: The recent generalizations of the Boltzmann–Gibbs statistics mathematically rely on deformed logarithmic and exponential functions defined through some deformation parameters. In present work, we investigate whether a logarithmic/exponential map is bijection from R+/R (set positive real numbers/all numbers) to R/R+, as their undeformed counterparts. We show that inverse exists only in subsets aforementioned (co)domains. Furthermore, conditions which generalized function has satisfy, so most important properties ordinary are preserved. fulfillment these permits us determine validity interval finally apply our analysis Tsallis q-deformed discuss concavity Renyi entropy.

参考文章(14)
Th. Oikonomou, Properties of the “non-extensive Gaussian” entropy Physica A-statistical Mechanics and Its Applications. ,vol. 381, pp. 155- 163 ,(2007) , 10.1016/J.PHYSA.2007.03.010
Thomas Oikonomou, Ugur Tirnakli, Generalized entropic structures and non-generality of Jaynes’ Formalism Chaos, Solitons & Fractals. ,vol. 42, pp. 3027- 3034 ,(2009) , 10.1016/J.CHAOS.2009.04.015
Constantino Tsallis, Possible generalization of Boltzmann-Gibbs statistics Journal of Statistical Physics. ,vol. 52, pp. 479- 487 ,(1988) , 10.1007/BF01016429
Th. Oikonomou, Tsallis, Rényi and nonextensive Gaussian entropy derived from the respective multinomial coefficients Physica A-statistical Mechanics and Its Applications. ,vol. 386, pp. 119- 134 ,(2007) , 10.1016/J.PHYSA.2007.08.025
A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, On the cut-off prescriptions associated with power-law generalized thermostatistics Physics Letters A. ,vol. 343, pp. 71- 78 ,(2005) , 10.1016/J.PHYSLETA.2005.06.026
L. Nivanen, A. Le Méhauté, Q.A. Wang, Generalized algebra within a nonextensive statistics Reports on Mathematical Physics. ,vol. 52, pp. 437- 444 ,(2003) , 10.1016/S0034-4877(03)80040-X
John D. Ramshaw, Thermodynamic stability conditions for the Tsallis and Rényi entropies Physics Letters A. ,vol. 198, pp. 119- 121 ,(1995) , 10.1016/0375-9601(95)00035-2
E.K. Lenzi, R.S. Mendes, L.R. da Silva, Statistical mechanics based on Renyi entropy Physica A-statistical Mechanics and Its Applications. ,vol. 280, pp. 337- 345 ,(2000) , 10.1016/S0378-4371(00)00007-8