Forecast comparison of principal component regression and principal covariate regression

作者: Christiaan Heij , Patrick J.F. Groenen , Dick van Dijk

DOI: 10.1016/J.CSDA.2006.10.019

关键词: Principal (computer security)Cross-sectional regressionRegressionStatisticsCovariatePrincipal component analysisEconometricsMathematicsFactor analysisPrincipal component regressionRegression analysis

摘要: Forecasting with many predictors is of interest, for instance, in macroeconomics and finance. The forecast accuracy two methods dealing compared, that is, principal component regression (PCR) covariate (PCovR). Simulation experiments data generated by factor models indicate that, general, PCR performs better the first type PCovR second data. An empirical application to four key US macroeconomic variables shows achieves improved some situations.

参考文章(11)
Sijmen de Jong, Henk A.L. Kiers, Principal covariates regression: Part I. Theory Chemometrics and Intelligent Laboratory Systems. ,vol. 14, pp. 155- 164 ,(1992) , 10.1016/0169-7439(92)80100-I
C. W. J. Granger, Allan Timmermann, Graham Elliott, Handbook of Economic Forecasting ,(2006)
James H. Stock, Mark W. Watson, Chapter 10 Forecasting with Many Predictors Handbook of Economic Forecasting. ,vol. 1, pp. 515- 554 ,(2006) , 10.1016/S1574-0706(05)01010-4
James H Stock, Mark W Watson, Macroeconomic Forecasting Using Diffusion Indexes Journal of Business & Economic Statistics. ,vol. 20, pp. 147- 162 ,(2002) , 10.1198/073500102317351921
James H Stock, Mark W Watson, Forecasting Using Principal Components From a Large Number of Predictors Journal of the American Statistical Association. ,vol. 97, pp. 1167- 1179 ,(2002) , 10.1198/016214502388618960
Marianne Sensier, Dick van Dijk, Testing for Volatility Changes in U.S. Macroeconomic Time Series The Review of Economics and Statistics. ,vol. 86, pp. 833- 839 ,(2004) , 10.1162/0034653041811752
Dick van Dijk, Christiaan Heij, Patrick Groenen, Time series forecasting by principal covariate regression Report / Econometric Institute, Erasmus University Rotterdam. ,(2006)
Jushan Bai, Serena Ng, Determining the Number of Factors in Approximate Factor Models Econometrica. ,vol. 70, pp. 191- 221 ,(2002) , 10.1111/1468-0262.00273
Jean Boivin, Serena Ng, Are more data always better for factor analysis Journal of Econometrics. ,vol. 132, pp. 169- 194 ,(2006) , 10.1016/J.JECONOM.2005.01.027