Random deposition with spatially correlated noise (RD-SCN) model: Multi-affine analysis

作者: A.A. Masoudi , S. Hosseinabadi

DOI: 10.1016/J.CHAOS.2020.110596

关键词: Critical exponentNoise (electronics)Condensed matter physicsNormal distributionExponentScalingHurst exponentDetrended fluctuation analysisFractal analysisPhysics

摘要: Abstract We study the random deposition model with long-range spatially correlated noise. In this particles deposit in a power-law distance of each other as Δ i , j = n t [ u − 1 2 ρ ] where is chosen randomly over range (0,1) and correlation strength. The results show that enhancement exponent accompanied by appearance irregularities jumps height fluctuations. spite scaling exponents dependent to strength linear non-linear growth equations, strength, does not change β / . As short-range correlations equations result roughness saturation, saturate interface width for any system size. fractal analysis fluctuations performed via multi-fractal detrended fluctuation (MF-DFA) revealed synthetic rough surfaces 0 are mono-fractal Hurst H 0.5 It verifies un-correlated simple model. For strengths [0,1], increases ) behavior. critical c multi-affinity occurred. > feature tends multi-affine one exponent. observed because deviation from normal distribution among small large

参考文章(49)
A. I. Posazhennikova, J. O. Indekeu, Random surfaces from hierarchical deposition of debris with alternating rescaling factors International Journal of Thermophysics. ,vol. 22, pp. 1123- 1135 ,(2001) , 10.1023/A:1010656023916
Charles B. Duke, E. Ward Plummer, Frontiers in surface and interface science North Holland : Elsevier. ,(2002)
Fereydoon Family, Tamás Vicsek, Dynamics of Fractal Surfaces WORLD SCIENTIFIC. ,(1991) , 10.1142/1452
Thomas Gueudre, Pierre Le Doussal, Jean-Philippe Bouchaud, Alberto Rosso, Ground-state statistics of directed polymers with heavy-tailed disorder. Physical Review E. ,vol. 91, pp. 062110- ,(2015) , 10.1103/PHYSREVE.91.062110
Shlomo Havlin, Armin Bunde, Fractals and Disordered Systems ,(1991)
S.P. Sullivan, L.F. Gladden, M.L. Johns, Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques Journal of Non-newtonian Fluid Mechanics. ,vol. 133, pp. 91- 98 ,(2006) , 10.1016/J.JNNFM.2005.11.003
Albert-Laszló Barabási, Harry Eugene Stanley, Fractal Concepts in Surface Growth ,(1995)
F. A. Silveira, F. D. A. Aarão Reis, Langevin equations for competitive growth models. Physical Review E. ,vol. 85, pp. 011601- ,(2012) , 10.1103/PHYSREVE.85.011601
A. Arneodo, E. Bacry, J.F. Muzy, THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS Physica A-statistical Mechanics and Its Applications. ,vol. 213, pp. 232- 275 ,(1995) , 10.1016/0378-4371(94)00163-N
S. Hosseinabadi, M. A. Rajabpour, M. Sadegh Movahed, S. M. Vaez Allaei, Geometrical exponents of contour loops on synthetic multifractal rough surfaces: multiplicative hierarchical cascade p model. Physical Review E. ,vol. 85, pp. 031113- ,(2012) , 10.1103/PHYSREVE.85.031113